Electromagnetic Phenomena in Cosmical Physics

Electromagnetic Phenomena in Cosmical Physics

Author: B. Lehnert

Publisher: Cambridge University Press

Published: 2016-06-02

Total Pages: 593

ISBN-13: 1316612856

DOWNLOAD EBOOK

This book contains papers from symposium number 6, organised by the International Astronomical Union and held on 27th-28th and 30th-31st August 1956.


Spontaneous Current Sheets in Magnetic Fields

Spontaneous Current Sheets in Magnetic Fields

Author: Eugene N. Parker

Publisher: Oxford University Press

Published: 1994-07-21

Total Pages: 435

ISBN-13: 0195360850

DOWNLOAD EBOOK

Expanding upon the ideas first proposed in his seminal book Cosmical Magnetic Fields, Eugene N. Parker here offers the first in-depth treatment of the magnetohydrodynamic theory of spontaneous magnetic discontinuities. In detailing his theory of the spontaneous formation of tangential discontinuities (current sheets) in a magnetic field embedded in highly conducting plasma, Parker shows how it can be used to explain the activity of the external magnetic fields of planets, stars, interstellar gas clouds, and galaxies, as well as the magnetic fields in laboratory plasmas. Provocative and fascinating, Spontaneous Current Sheets in Magnetic Fields presents a bold new theory that will excite interest and discussion throughout the space physics community.


Nuclear Science Abstracts

Nuclear Science Abstracts

Author:

Publisher:

Published: 1961

Total Pages: 808

ISBN-13:

DOWNLOAD EBOOK

NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.


Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research

Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research

Author: David Southwood

Publisher: Springer

Published: 2015-08-20

Total Pages: 279

ISBN-13: 3319183591

DOWNLOAD EBOOK

This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 when Dungey’s epoch-making paper was published. Further contributions on current Earth magnetosphere research and space plasma physics included in this book show how Dungey’s basic ideas have remained explanative 50 years on. But the Festspiel also introduced some advances that possibly Dungey had not foreseen. One of the contributions presented in this book is on the variety of magnetospheres of the solar system which have been seen directly during the space age, discussing the variations in spatial scale and reconnection time scale and comparing them in respect of Earth, Mercury, the giant planets as well as Ganymede.


Ultra and Extremely Low Frequency Electromagnetic Fields

Ultra and Extremely Low Frequency Electromagnetic Fields

Author: Vadim Surkov

Publisher: Springer

Published: 2014-07-08

Total Pages: 495

ISBN-13: 4431543678

DOWNLOAD EBOOK

The major emphasis of this book is on physical mechanisms and sources of the ULF/ELF natural electromagnetic fields noises. In the course of this text, some of these mechanisms of magnetospheric origin will be treated in detail and others in a more sketchy fashion, while the global electromagnetic resonances excited by lightning activity and other sources are the priority. The interested reader is referred to the books cited in the text for details about the ULF/ELF fields of magnetospheric origin. Much emphasis is put on studies of electromagnetic phenomena caused by rock deformation/fracture including the ULF/ELF effects possibly associated with tectonic activity, earthquakes and other natural disasters. One of the challenges of this research is to fully understand electromagnetic effects and physical processes in the rocks deep in the Earth’s crust.


Cosmic Plasmas and Electromagnetic Phenomena

Cosmic Plasmas and Electromagnetic Phenomena

Author: Athina Meli

Publisher: MDPI

Published: 2019-10-25

Total Pages: 264

ISBN-13: 3039214659

DOWNLOAD EBOOK

During the past few decades, plasma science has witnessed a great growth in laboratory studies, in simulations, and in space. Plasma is the most common phase of ordinary matter in the universe. It is a state in which ionized matter (even as low as 1%) becomes highly electrically conductive. As such, long-range electric and magnetic fields dominate its behavior. Cosmic plasmas are mostly associated with stars, supernovae, pulsars and neutron stars, quasars and active galaxies at the vicinities of black holes (i.e., their jets and accretion disks). Cosmic plasma phenomena can be studied with different methods, such as laboratory experiments, astrophysical observations, and theoretical/computational approaches (i.e., MHD, particle-in-cell simulations, etc.). They exhibit a multitude of complex magnetohydrodynamic behaviors, acceleration, radiation, turbulence, and various instability phenomena. This Special Issue addresses the growing need of the plasma science principles in astrophysics and presents our current understanding of the physics of astrophysical plasmas, their electromagnetic behaviors and properties (e.g., shocks, waves, turbulence, instabilities, collimation, acceleration and radiation), both microscopically and macroscopically. This Special Issue provides a series of state-of-the-art reviews from international experts in the field of cosmic plasmas and electromagnetic phenomena using theoretical approaches, astrophysical observations, laboratory experiments, and state-of-the-art simulation studies.


The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas

Author: Arnab Rai Choudhuri

Publisher: Cambridge University Press

Published: 1998-11-26

Total Pages: 452

ISBN-13: 9780521555432

DOWNLOAD EBOOK

A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.