University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Advanced Electromagnetism: Foundations: Theory And Applications

Advanced Electromagnetism: Foundations: Theory And Applications

Author: Terence William Barrett

Publisher: World Scientific

Published: 1995-11-16

Total Pages: 807

ISBN-13: 9814501085

DOWNLOAD EBOOK

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.


Maxwell's Equations and the Principles of Electromagnetism

Maxwell's Equations and the Principles of Electromagnetism

Author: Richard Fitzpatrick

Publisher: Jones & Bartlett Publishers

Published: 2008

Total Pages: 451

ISBN-13: 1934015202

DOWNLOAD EBOOK

Designed for upper division electro- magnetism courses or as a reference for electrical engineers & scientists, this is an introduction to Maxwell's equations & electromagnetic waves. Further discusses electrostatics, magnetostatics, induction, etc., in the light of those equations. Discussion of vector field theory included.


Faraday, Maxwell, and the Electromagnetic Field

Faraday, Maxwell, and the Electromagnetic Field

Author: Nancy Forbes

Publisher: Prometheus Books

Published: 2014-03-11

Total Pages: 330

ISBN-13: 1616149434

DOWNLOAD EBOOK

The story of two brilliant nineteenth-century scientists who discovered the electromagnetic field, laying the groundwork for the amazing technological and theoretical breakthroughs of the twentieth century Two of the boldest and most creative scientists of all time were Michael Faraday (1791-1867) and James Clerk Maxwell (1831-1879). This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time. The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skills, and prodigious scientific imagination. James Clerk Maxwell was highly regarded as one of the most brilliant mathematical physicists of the age. He made an enormous number of advances in his own right. But when he translated Faraday's ideas into mathematical language, thus creating field theory, this unified framework of electricity, magnetism and light became the basis for much of later, 20th-century physics. Faraday's and Maxwell's collaborative efforts gave rise to many of the technological innovations we take for granted today - from electric power generation to television, and much more. Told with panache, warmth, and clarity, this captivating story of their greatest work - in which each played an equal part - and their inspiring lives will bring new appreciation to these giants of science.


An Introduction to Theoretical and Computational Aerodynamics

An Introduction to Theoretical and Computational Aerodynamics

Author: Jack Moran

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 484

ISBN-13: 0486317536

DOWNLOAD EBOOK

Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.


Electromagnetics and Calculation of Fields

Electromagnetics and Calculation of Fields

Author: Nathan Ida

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 583

ISBN-13: 1461206618

DOWNLOAD EBOOK

This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.