This book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficac
Damage from corrosion costs billions of dollars per year. Controlling corrosion requires a fundamental, in-depth understanding of the mechanisms and phenomena involved, and this understanding is best achieved through advanced analytical methods. The first book to treat both surface analytical and electrochemical techniques in a single reference, An
This book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficacy of corrosion inhibitors and coatings for metals and alloys, developing effective corrosion prediction models, calculating the corrosion rates of various materials, determining the resistance of alloys to pitting and crevice corrosion, and considering current and potential distribution effects on corrosion.
Electrochemistry and Corrosion Science is a graduate level text/professional reference that describes the types of corrosion on metallic materials. The focus will be on modeling and engineering approximation schemes that describe the thermodynamics and kinetics of electrochemical systems. The principles of corrosion behavior and metal recovery are succinctly described with the aid of pictures, figures, graphs and schematic models, followed by derivation of equations to quantify relevant parameters. Example problems are included to illustrate the application of electrochemical concepts and mathematics for solving complex corrosion problems. This book differs from others in that the subject matter is organized around the modeling and predicating approaches that are used to determine detrimental and beneficial electrochemical events. Thus, this book will take a more practical approach and make it especially useful as a basic text and reference for professional engineers.
Techniques for Corrosion Monitoring, Second Edition, reviews electrochemical techniques for corrosion monitoring, such as polarization techniques, potentiometric methods, electrochemical noise and harmonic analyses, galvanic sensors, differential flow through cells and multielectrode systems. Other sections analyze the physical or chemical methods of corrosion monitoring, including gravimetric, radioactive tracer, hydrogen permeation, electrical resistance and rotating cage techniques, and examine corrosion monitoring in special environments such as microbial systems, concrete and soil, and remote monitoring and model predictions. A final group of chapters case studies covering ways in which corrosion monitoring can be applied to engine exhaust systems, cooling water systems, and more. With its distinguished editor and international team of contributors, this book is a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion in such areas as automotive engineering, power generation, water suppliers and the petrochemical industry. Provides an in-depth presentation of what current corrosion monitoring techniques are available Presents insights into how to choose the best technique(s) for specific corrosion monitoring needs Includes case studies that highlight the main issues Serves as a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion
The Second Edition of Introduction to Electrochemical Science and Engineering outlines the basic principles and techniques used in the development of electrochemical engineering related technologies, such as fuel cells, electrolyzers, and flow-batteries. Covering topics from electrolyte solutions to electrochemical energy conversion systems and corrosion, this revised and expanded edition provides new educational material to help readers familiarize themselves with some of today’s most useful electrochemical concepts. The Second Edition includes a new Appendix C with a detailed description of how the most common electrochemical laboratories can be organized, what data should be collected, and how the data should be treated and presented in a report. Video demonstrations for these laboratories are available on YouTube. In addition, the author has added conceptual and numerical exercises to all of the chapters to help with the understanding of the book material and to extend the important aspects of the electrochemical science and engineering. Finally, electrochemical impedance spectroscopy is now used in most electrochemical laboratories, and so a new section briefly describes this technique in Chapter 7. This new edition Ensures readers have a fundamental knowledge of the core concepts of electrochemical science and engineering, such as electrochemical cells, electrolytic conductivity, electrode potential, and current–potential relations related to a variety of electrochemical systems Develops the initial skills needed to understand an electrochemical experiment and successfully evaluate experimental data without visiting a laboratory Promotes an appreciation of the capabilities and applications of key electrochemical techniques Features eight lab descriptions and instructions that can be used to develop the labs by instructors for a university electrochemical engineering class Integrates eight online videos with lab demonstrations to advise instructors and students on how the labs can be carried out Features a solutions manual for adopting instructors The Second Edition is an ideal and unique text for undergraduate engineering and science students and readers in need of introductory-level content. Graduate students and engineers looking for a quick introduction to the subject will benefit from the simple structure of this book. Instructors interested in teaching the subject to undergraduate students can immediately use this book without reservation.
This textbook is intended for a one-semester course in corrosion science at the graduate or advanced undergraduate level. The approach is that of a physical chemist or materials scientist, and the text is geared toward students of chemistry, materials science, and engineering. This textbook should also be useful to practicing corrosion engineers or materials engineers who wish to enhance their understanding of the fundamental principles of corrosion science. It is assumed that the student or reader does not have a background in electrochemistry. However, the student or reader should have taken at least an undergraduate course in materials science or physical chemistry. More material is presented in the textbook than can be covered in a one-semester course, so the book is intended for both the classroom and as a source book for further use. This book grew out of classroom lectures which the author presented between 1982 and the present while a professorial lecturer at George Washington University, Washington, DC, where he organized and taught a graduate course on “Environmental Effects on Materials.” Additional material has been provided by over 30 years of experience in corrosion research, largely at the Naval Research Laboratory, Washington, DC and also at the Bethlehem Steel Company, Bethlehem, PA and as a Robert A. Welch Postdoctoral Fellow at the University of Texas. The text emphasizes basic principles of corrosion science which underpin extensions to practice.
Metals are used at an extremely high rate in the industrial and manufacturing fields. Exemplary properties including strength and ductility have made this material highly dynamic; however, the risk of corrosion remains a vital issue. The study of corrosion prevention has attracted interest from researchers and professionals as new technologies are emerging that can assist in the prevention of material destruction. However, research is lacking on the application of these protective technologies within specific fields. New Challenges and Industrial Applications for Corrosion Prevention and Control provides emerging research exploring the theoretical and practical aspects of protective methods against corrosion and the implementation of these techniques within a wide span of professional disciplines. Featuring coverage on a broad range of topics such as molecular modeling, surface treatments, and biomaterials, this book is ideally designed for engineers, industrial chemists, material scientists, researchers, engineers, academicians, practitioners, and students seeking current research on the technological advancements in corrosion protection in various professional scopes.
Corrosion is a huge issue for materials, mechanical, civil and petrochemical engineers. With comprehensive coverage of the principles of corrosion engineering, this book is a one-stop text and reference for students and practicing corrosion engineers. Highly illustrated, with worked examples and definitions, it covers basic corrosion principles, and more advanced information for postgraduate students and professionals. Basic principles of electrochemistry and chemical thermodynamics are incorporated to make the book accessible for students and engineers who do not have prior knowledge of this area. Each form of corrosion covered in the book has a definition, description, mechanism, examples and preventative methods. Case histories of failure are cited for each form. End of chapter questions are accompanied by an online solutions manual.* Comprehensively covers the principles of corrosion engineering, methods of corrosion protection and corrosion processes and control in selected engineering environments* Structured for corrosion science and engineering classes at senior undergraduate and graduate level, and is an ideal reference that readers will want to use in their professional work* Worked examples, extensive end of chapter exercises and accompanying online solutions and written by an expert from a key pretochemical university