Electrochemical Phase Formation and Growth

Electrochemical Phase Formation and Growth

Author: Evgeni B. Budevski

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 421

ISBN-13: 3527614923

DOWNLOAD EBOOK

Electrochemical processes and methods are basic to many important scientific disciplines, materials science and nanotechnology being only two keywords. For the first time in more than twenty years this volume presents a critical survey of the foundations, methodology and applications of electrochemical phase formation and growth processes. Written by a team of three internationally renowned authors, it is an invaluable source of information for all scientists concerned with electrocrystallization of metals or the in-situ characterization of electron-conducting surfaces. Not only the numerous illustrations (partly in colour) but also the vast number of references covering the literature up to and including 1995 make this volume indispensable for every laboratory working in electrochemical or materials science.


Fundamentals of Electrochemical Growth

Fundamentals of Electrochemical Growth

Author: S. R. Brankovic

Publisher: The Electrochemical Society

Published: 2010-02

Total Pages: 115

ISBN-13: 1566778085

DOWNLOAD EBOOK

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Fundamentals of Electrochemical Growth: From UPD to Microstructures ¿ Symposium in Memory of Prof. Evgeni Budevski¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.


Electrocrystallization

Electrocrystallization

Author: Alexander Milchev

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 274

ISBN-13: 0306475529

DOWNLOAD EBOOK

“Electrocrystallization is a particular case of a first order phase transition” and “Electrocrystallization is a particular case of electrochemical kinetics” are two statements that I have heard and read many times. I do not like them for a simple reason: it is annoying to see that the subject to which you have devoted more than 30 years of your life may be considered as a “particular case”. Therefore, I decided to write this book in which Electrocrystallization is the main subject. To become competent in the field of Electrocrystallization one should possess knowledge of Electrochemistry, Nucleation and Crystal Growth, which means knowledge of Physical Chemistry, Physics and Mathematics. That is certainly difficult and in most cases those who study Electrocrystallization are either more electrochemists, or more physical chemists, or more physicists, very often depending on whom has been their teacher. Of course, there are scientists who consider themselves equally good in all those fields. Very frequently they are, unfortunately, equally bad. The difference is essential but strange enough, it is sometimes not easy to realize the truth immediately.


Electrochemistry of Immobilized Particles and Droplets

Electrochemistry of Immobilized Particles and Droplets

Author: Fritz Scholz

Publisher: Springer Science & Business Media

Published: 2005-12-06

Total Pages: 299

ISBN-13: 3540261907

DOWNLOAD EBOOK

Immobilizing particles or droplets on electrodes is a novel and most powerful technique for studying the electrochemical reactions of three-phase systems. It gives access to a wealth of information, ranging from quantitative and phase analysis to thermodynamic and kinetic data of electrode processes. Three-phase electrodes with immobilized droplets provide information on the electrochemistry of redox liquids and of compounds dissolved in inert organic liquids. Such measurements allow the determination of the Gibbs energies of the transfer of cations and anions between immiscible solvents, and thus make it possible to assess the hydrophobicity of ions – a property that is of great importance for pharmaceutical applications, biological studies, and for many fields of chemistry. The monograph gives, for the first time, a comprehensive overview of the results published in more than 300 papers over the last 15 years. The experiments are explained in detail, applications from many different fields are presented, and the theoretical basis of the systems is outlined.


Nanoelectrochemistry

Nanoelectrochemistry

Author: Michael V. Mirkin

Publisher: CRC Press

Published: 2015-03-27

Total Pages: 852

ISBN-13: 146656122X

DOWNLOAD EBOOK

Nanoscale electrochemistry has revolutionized electrochemical research and technologies and has impacted other fields, including nanotechnology and nanoscience, biology, and materials chemistry. This book examines well-established concepts and principles and provides an updated overview of the field and its applications. The first two chapters contain theoretical background, specifically, theories of electron transfer, transport, and double-layer processes at nanoscale electrochemical interfaces. The next chapters examine the electrochemical studies of nanomaterials and nanosystems, as well as the applications of nanoelectrochemical techniques. Each chapter can be read independently, providing readers with a compact, up-to-date review of th


Coulombic Fluids

Coulombic Fluids

Author: Werner Freyland

Publisher: Springer Science & Business Media

Published: 2011-03-23

Total Pages: 188

ISBN-13: 3642177794

DOWNLOAD EBOOK

Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.


Electrochemical Methods

Electrochemical Methods

Author: Allen J. Bard

Publisher: John Wiley & Sons

Published: 2022-05-03

Total Pages: 1112

ISBN-13: 1119334055

DOWNLOAD EBOOK

The latest edition of a classic textbook in electrochemistry The third edition of Electrochemical Methods has been extensively revised to reflect the evolution of electrochemistry over the past two decades, highlighting significant developments in the understanding of electrochemical phenomena and emerging experimental tools, while extending the book's value as a general introduction to electrochemical methods. This authoritative resource for new students and practitioners provides must-have information crucial to a successful career in research. The authors focus on methods that are extensively practiced and on phenomenological questions of current concern. This latest edition of Electrochemical Methods contains numerous problems and chemical examples, with illustrations that serve to illuminate the concepts contained within in a way that will assist both student and mid-career practitioner. Significant updates and new content in this third edition include: An extensively revised introductory chapter on electrode processes, designed for new readers coming into electrochemistry from diverse backgrounds New chapters on steady-state voltammetry at ultramicroelectrodes, inner-sphere electrode reactions and electrocatalysis, and single-particle electrochemistry Extensive treatment of Marcus kinetics as applied to electrode reactions, a more detailed introduction to migration, and expanded coverage of electrochemical impedance spectroscopy The inclusion of Lab Notes in many chapters to help newcomers with the transition from concept to practice in the laboratory The new edition has been revised to address a broader audience of scientists and engineers, designed to be accessible to readers with a basic foundation in university chemistry, physics and mathematics. It is a self-contained volume, developing all key ideas from the fundamental principles of chemistry and physics. Perfect for senior undergraduate and graduate students taking courses in electrochemistry, physical and analytical chemistry, this is also an indispensable resource for researchers and practitioners working in fields including electrochemistry and electrochemical engineering, energy storage and conversion, analytical chemistry and sensors.


Underpotential Deposition

Underpotential Deposition

Author: Oscar Alejandro Oviedo

Publisher: Springer

Published: 2015-12-14

Total Pages: 368

ISBN-13: 3319243942

DOWNLOAD EBOOK

With this volume, Ezequiel P. M. Leiva and co-authors fill a gap in the available literature, by providing a much-needed, comprehensive review of the relevant literature for electrochemists, materials scientists and energy researchers. For the first time, they present applications of underpotential deposition (UPD) on the nanoscale, such as nanoparticles and nanocavities, as well as for electrocatalysis. They also discuss real surface determinations and layer-by-layer growth of ultrathin films, as well as the very latest modeling approaches to UPD based on nanothermodynamics, statistical mechanics, molecular dynamics and Monte-Carlo simulations.


Electrodeposition from Ionic Liquids

Electrodeposition from Ionic Liquids

Author: Frank Endres

Publisher: John Wiley & Sons

Published: 2008-09-08

Total Pages: 410

ISBN-13: 3527622926

DOWNLOAD EBOOK

Reflecting the dramatic rise in interest shown in this field over the last few years, this book collates the widespread knowledge into one handy volume. It covers in depth all classes of ionic liquids thus far in existence, with the individual chapters written by internationally recognized experts. The text is written to suit several levels of difficulty, containing information on basic physical chemistry in ionic liquids, a theory on the conductivity as well as plating protocols suited to undergraduate courses. The whole is rounded off with an appendix providing experimental procedures to enable readers to experiment with ionic liquids for themselves.