Continuum Mechanics - Volume III

Continuum Mechanics - Volume III

Author: José Merodio

Publisher: EOLSS Publications

Published: 2011-11-30

Total Pages: 388

ISBN-13: 1848263740

DOWNLOAD EBOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.


Electrorheological Fluids And Magnetorheological Suspensions (Ermr 2004) - Proceedings Of The Ninth International Conference

Electrorheological Fluids And Magnetorheological Suspensions (Ermr 2004) - Proceedings Of The Ninth International Conference

Author: Kunquan Lu

Publisher: World Scientific

Published: 2005-06-14

Total Pages: 1013

ISBN-13: 9814481181

DOWNLOAD EBOOK

This volume covers the most recent progress of research work on electrorheological (ER) and magnetorheological (MR) industrial applications related to controllable damping, ER/MR fundamental mechanisms, and understanding the potential of new classes of field responsive materials.The proceedings have been selected for coverage in:• Materials Science Citation Index®• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences


Electromagneto-Mechanics of Material Systems and Structures

Electromagneto-Mechanics of Material Systems and Structures

Author: Yasuhide Shindo

Publisher: John Wiley & Sons

Published: 2016-06-07

Total Pages: 299

ISBN-13: 1118837967

DOWNLOAD EBOOK

Electromagneto-Mechanics of Material Systems and Structures Electromagneto-Mechanics of Material Systems and Structures Written by a leading expert, this book is a comprehensive introduction to the fundamentals and the state of the art in the electromagneto-mechanics of adaptive materials. Its varied topic range includes an overview on how electric, magnetic, and deformation fields interact with each other in the presence of advanced materials systems, such as electric conductors, dielectrics, ferromagnets, among others. Within this context, the author considers for each material system specific phenomena like vibrations, wave propagation, fracture, and fatigue. Readers will also gain a thorough understanding of applications in the electronics and nuclear energy industries, as well as in smart materials and MEMS. Covers a wide and varied range of subject areas, spanning theoretical, experimental, computational studies as well as industrial applications Features extensive applications in the electronics, nuclear engineering, smart materials and MEMS industries Takes the reader from fundamental concepts, applied research, applications through to emerging technologies Electromagneto-Mechanics of Material Systems and Structures is an all-in-one reference for advanced/graduate students in mechanical and electrical engineering, as well as materials science. It also serves as a handy refresher guide for engineers in related areas such as aeronautical and civil engineering.


Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials

Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials

Author: Raymond Ogden

Publisher: Springer Science & Business Media

Published: 2011-05-25

Total Pages: 268

ISBN-13: 3709107016

DOWNLOAD EBOOK

This volume presents a state-of-the-art overview of the continuum theory of both electro- and magneto-sensitive elastomers and polymers, which includes mathematical and computational aspects of the modelling of these materials from the point of view of material properties and, in particular, the "smart-material" control of their mechanical properties.


Nonlinear Theory of Electroelastic and Magnetoelastic Interactions

Nonlinear Theory of Electroelastic and Magnetoelastic Interactions

Author: Luis Dorfmann

Publisher: Springer Science & Business Media

Published: 2014-02-06

Total Pages: 318

ISBN-13: 1461495962

DOWNLOAD EBOOK

This book provides a unified theory on nonlinear electro-magnetomechanical interactions of soft materials capable of large elastic deformations. The authors include an overview of the basic principles of the classic theory of electromagnetism from the fundamental notions of point charges and magnetic dipoles through to distributions of charge and current in a non-deformable continuum, time-dependent electromagnetic fields and Maxwell’s equations. They summarize relevant theories of continuum mechanics, required to account for the deformability of material and present a constitutive framework for the nonlinear magneto-and electroelastic interactions in a highly deformable material. The equations contained in the book formulate and solve a variety of representative boundary-value problems for both nonlinear magnetoelasticity and electroelasticity.


Ferroic Functional Materials

Ferroic Functional Materials

Author: Jörg Schröder

Publisher: Springer

Published: 2017-11-23

Total Pages: 293

ISBN-13: 3319688839

DOWNLOAD EBOOK

The book covers experiments and theory in the fields of ferroelectrics, ferromagnets, ferroelastics, and multiferroics. Topics include experimental preparation and characterization of magnetoelectric multiferroics, the modeling of ferroelectric and ferromagnetic materials, the formation of ferroic microstructures and their continuum-mechanical modeling, computational homogenization, and the algorithmic treatment in the framework of numerical solution strategies.


Continuum Micromechanics

Continuum Micromechanics

Author: P. Suquet

Publisher: Springer

Published: 2014-05-04

Total Pages: 352

ISBN-13: 3709126622

DOWNLOAD EBOOK

This book presents the most recent progress of fundamental nature made in the new developed field of micromechanics: transformation field analysis, variational bounds for nonlinear composites, higher-order gradients in micromechanical damage models, dynamics of composites, pattern based variational bounds.


Mechanics of Microstructured Solids

Mechanics of Microstructured Solids

Author: J.-F. Ganghoffer

Publisher: Springer Science & Business Media

Published: 2009-05-14

Total Pages: 133

ISBN-13: 3642009115

DOWNLOAD EBOOK

This is a compendium of reviewed articles presented at the 11th EUROMECH-MECAMAT conference entitled, "Mechancis of microstructured solids: cellular materials, fibre reinforced solids and soft tissues." It provides all the latest information in the field.