Energy and Power Risk Management

Energy and Power Risk Management

Author: Alexander Eydeland

Publisher: John Wiley & Sons

Published: 2003-02-03

Total Pages: 506

ISBN-13: 0471455873

DOWNLOAD EBOOK

Praise for Energy and Power Risk Management "Energy and Power Risk Management identifies and addresses the key issues in the development of the turbulent energy industry and the challenges it poses to market players. An insightful and far-reaching book written by two renowned professionals." -Helyette Geman, Professor of Finance University Paris Dauphine and ESSEC "The most up-to-date and comprehensive book on managing energy price risk in the natural gas and power markets. An absolute imperative for energy traders and energy risk management professionals." -Vincent Kaminski, Managing Director Citadel Investment Group LLC "Eydeland and Wolyniec's work does an excellent job of outlining the methods needed to measure and manage risk in the volatile energy market." -Gerald G. Fleming, Vice President, Head of East Power Trading, TXU Energy Trading "This book combines academic rigor with real-world practicality. It is a must-read for anyone in energy risk management or asset valuation." -Ron Erd, Senior Vice President American Electric Power


Valuation, Hedging and Speculation in Competitive Electricity Markets

Valuation, Hedging and Speculation in Competitive Electricity Markets

Author: Petter L. Skantze

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 220

ISBN-13: 146151701X

DOWNLOAD EBOOK

The challenges currently facing particIpants m competitive electricity markets are unique and staggering: unprecedented price volatility, a crippling lack of historical market data on which to test new modeling approaches, and a continuously changing regulatory structure. Meeting these challenges will require the knowledge and experience of both the engineering and finance communities. Yet the two communities continue to largely ignore each other. The finance community believes that engineering models are too detailed and complex to be practically applicable in the fast changing market environment. Engineers counter that the finance models are merely statistical regressions, lacking the necessary structure to capture the true dynamic properties of complex power systems. While both views have merit, neither group has by themselves been able to produce effective tools for meeting industry challenges. The goal of this book is to convey the fundamental differences between electricity and other traded commodities, and the impact these differences have on valuation, hedging and operational decisions made by market participants. The optimization problems associated with these decisions are formulated in the context of the market realities of today's power industry, including a lack of liquidity on forward and options markets, limited availability of historical data, and constantly changing regulatory structures.


Stochastic Modelling of Electricity and Related Markets

Stochastic Modelling of Electricity and Related Markets

Author: Fred Espen Benth

Publisher: World Scientific

Published: 2008

Total Pages: 352

ISBN-13: 9812812318

DOWNLOAD EBOOK

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives. This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. OrnsteinOCoUhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice. Sample Chapter(s). A Survey of Electricity and Related Markets (331 KB). Contents: A Survey of Electricity and Related Markets; Stochastic Analysis for Independent Increment Processes; Stochastic Models for the Energy Spot Price Dynamics; Pricing of Forwards and Swaps Based on the Spot Price; Applications to the Gas Markets; Modeling Forwards and Swaps Using the HeathOCoJarrowOCoMorton Approach; Constructing Smooth Forward Curves in Electricity Markets; Modeling of the Electricity Futures Market; Pricing and Hedging of Energy Options; Analysis of Temperature Derivatives. Readership: Researchers in energy and commodity markets, and mathematical finance.


Stochastic Modeling Of Electricity And Related Markets

Stochastic Modeling Of Electricity And Related Markets

Author: Fred Espen Benth

Publisher: World Scientific

Published: 2008-04-14

Total Pages: 352

ISBN-13: 9814471313

DOWNLOAD EBOOK

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein-Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.


Quantitative Energy Finance

Quantitative Energy Finance

Author: Fred Espen Benth

Publisher: Springer Science & Business Media

Published: 2013-08-28

Total Pages: 318

ISBN-13: 1461472482

DOWNLOAD EBOOK

Finance and energy markets have been an active scientific field for some time, even though the development and applications of sophisticated quantitative methods in these areas are relatively new—and referred to in a broader context as energy finance. Energy finance is often viewed as a branch of mathematical finance, yet this area continues to provide a rich source of issues that are fuelling new and exciting research developments. Based on a special thematic year at the Wolfgang Pauli Institute (WPI) in Vienna, Austria, this edited collection features cutting-edge research from leading scientists in the fields of energy and commodity finance. Topics discussed include modeling and analysis of energy and commodity markets, derivatives hedging and pricing, and optimal investment strategies and modeling of emerging markets, such as power and emissions. The book also confronts the challenges one faces in energy markets from a quantitative point of view, as well as the recent advances in solving these problems using advanced mathematical, statistical and numerical methods. By addressing the emerging area of quantitative energy finance, this volume will serve as a valuable resource for graduate-level students and researchers studying financial mathematics, risk management, or energy finance.


Electricity Derivatives

Electricity Derivatives

Author: René Aïd

Publisher: Springer

Published: 2015-01-14

Total Pages: 107

ISBN-13: 3319083953

DOWNLOAD EBOOK

Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.


Energy Risk

Energy Risk

Author: Dragana Pilipović

Publisher: McGraw Hill Professional

Published: 1998

Total Pages: 284

ISBN-13: 9780786312313

DOWNLOAD EBOOK

Gain the benefit of Pilipovic's complete energy risk management system, from devising hedging and trading strategies to the implementation on the trading desk. "Energy Risk" explains valuation and portfolio analysis, and offers tips for managers who must deal with energy risk. It covers electricity, natural gas, and other energy markets. 175 illus.


Modeling Electricity Price and Quantity Uncertainty

Modeling Electricity Price and Quantity Uncertainty

Author: Alfredo Trespalacios

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric distribution defined in terms of the Gram-Charlier expansion. This distribution allows to jointly model not only mean, variance, and correlation, but also skewness, kurtosis, and higher-order moments. Based on this model, we propose a static hedging strategy for electricity generators that participate in a competitive market where hedging is carried out through forward contracts that include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and consider information from the Colombian electricity market as the case study. The results show that the volume of energy to be sold under long-term contracts depends on each electricity generator and the risk assessment made by the market in the Forward Risk Premium. The conditions of skewness, kurtosis, and correlation, as well as the type of risk indicator to be employed, affect the hedging strategy that each electricity generator should implement.


Managing Energy Risk

Managing Energy Risk

Author: Markus Burger

Publisher: John Wiley & Sons

Published: 2014-09-09

Total Pages: 452

ISBN-13: 1118618637

DOWNLOAD EBOOK

An overview of today's energy markets from a multi-commodity perspective As global warming takes center stage in the public and private sectors, new debates on the future of energy markets and electricity generation have emerged around the world. The Second Edition of Managing Energy Risk has been updated to reflect the latest products, approaches, and energy market evolution. A full 30% of the content accounts for changes that have occurred since the publication of the first edition. Practitioners will appreciate this contemporary approach to energy and the comprehensive information on recent market influences. A new chapter is devoted to the growing importance of renewable energy sources, related subsidy schemes and their impact on energy markets. Carbon emissions certificates, post-Fukushima market shifts, and improvements in renewable energy generation are all included. Further, due to the unprecedented growth in shale gas production in recent years, a significant amount of material on gas markets has been added in this edition. Managing Energy Risk is now a complete guide to both gas and electricity markets, and gas-specific models like gas storage and swing contracts are given their due. The unique, practical approach to energy trading includes a comprehensive explanation of the interactions and relations between all energy commodities. Thoroughly revised to reflect recent changes in renewable energy, impacts of the financial crisis, and market fluctuations in the wake of Fukushima Emphasizes both electricity and gas, with all-new gas valuation models and a thorough description of the gas market Written by a team of authors with theoretical and practical expertise, blending mathematical finance and technical optimization Covers developments in the European Union Emissions Trading Scheme, as well as coal, oil, natural gas, and renewables The latest developments in gas and power markets have demonstrated the growing importance of energy risk management for utility companies and energy intensive industry. By combining energy economics models and financial engineering, Managing Energy Risk delivers a balanced perspective that captures the nuances in the exciting world of energy.