Classical Electromagnetism

Classical Electromagnetism

Author: Jerrold Franklin

Publisher: Courier Dover Publications

Published: 2017-09-27

Total Pages: 659

ISBN-13: 0486825884

DOWNLOAD EBOOK

This text advances from the basic laws of electricity and magnetism to classical electromagnetism in a quantum world. The treatment focuses on core concepts and related aspects of math and physics. 2016 edition.


Electricity and Magnetism

Electricity and Magnetism

Author: Elisha Gray

Publisher: Good Press

Published: 2019-11-22

Total Pages: 157

ISBN-13:

DOWNLOAD EBOOK

"Electricity and Magnetism" by Elsha Gray Elisha Gray was an American electrical engineer who co-founded the Western Electric Manufacturing Company. His expertise made him uniquely qualified to write a comprehensive book about his field. Electricity and Magnetism contains many examples of electromagnetic phenomena like induction, Hertzian waves, telluric currents, etc. All of these phenomena were used in a very ingenious way in various inventions without being able to have a theoretical explanation of their nature which Gray attempts to explain.


Principles of Electrodynamics

Principles of Electrodynamics

Author: Melvin Schwartz

Publisher: Courier Corporation

Published: 2012-04-24

Total Pages: 370

ISBN-13: 0486134679

DOWNLOAD EBOOK

The 1988 Nobel Prize winner establishes the subject's mathematical background, reviews the principles of electrostatics, then introduces Einstein's special theory of relativity and applies it to topics throughout the book.


Classical Electromagnetism in a Nutshell

Classical Electromagnetism in a Nutshell

Author: Anupam Garg

Publisher: Princeton University Press

Published: 2012-04-08

Total Pages: 709

ISBN-13: 0691130183

DOWNLOAD EBOOK

A comprehensive, modern introduction to electromagnetism This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Physics for Scientists and Engineers

Physics for Scientists and Engineers

Author: Raymond Serway

Publisher: Cengage Learning

Published: 2013-01-01

Total Pages: 1344

ISBN-13: 9781133953951

DOWNLOAD EBOOK

As a market leader, PHYSICS FOR SCIENTISTS AND ENGINEERS is one of the most powerful brands in the physics market. While preserving concise language, state-of-the-art educational pedagogy, and top-notch worked examples, the Ninth Edition highlights the Analysis Model approach to problem-solving, including brand-new Analysis Model Tutorials, written by text co-author John Jewett, and available in Enhanced WebAssign. The Analysis Model approach lays out a standard set of situations that appear in most physics problems, and serves as a bridge to help students identify the correct fundamental principle--and then the equation--to utilize in solving that problem. The unified art program and the carefully thought out problem sets also enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. The Ninth Edition of PHYSICS FOR SCIENTISTS AND ENGINEERS continues to be accompanied by Enhanced WebAssign in the most integrated text-technology offering available today. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


A Course in Classical Physics 1—Mechanics

A Course in Classical Physics 1—Mechanics

Author: Alessandro Bettini

Publisher: Springer

Published: 2016-03-31

Total Pages: 402

ISBN-13: 3319292579

DOWNLOAD EBOOK

This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. It is part of a four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, and is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter begins with an introduction that briefly describes the subjects to be discussed and ends with a summary of the main results. A number of “Questions” are included to help readers check their level of understanding. The textbook offers an ideal resource for physics students, lecturers and, last but not least, all those seeking a deeper understanding of the experimental basics of physics.