Electrical and Magnetic Methods of Nondestructive Testing presents a comprehensive account of the electrical and magnetic methods of nondestructive testing (NDT). The book begins with a discussion of the requirements for NDT and the criteria for the choice of a given method, followed by a summary of the general theory relating to electrical and magnetic testing techniques. Subsequent chapters discuss specific methods, including eddy current and flux-leakage techniques and microwave and potential drop methods. The appendix provides some useful programs for eddy current impedance analyses. These programs are in BASIC and can be run on PCs.
This book is intended to help satisfy an urgent requirement for up-to date comprehensive texts at graduate and senior undergraduate levels on the subjects in non-destructive testing (NDT). The subject matter here is confined to electrical and magnetic methods, with emphasis on the widely used eddy current and magnetic flux leakage methods (including particle inspection), but proper attention is paid to other techniques, such as microwave and AC field applications, which are rapidly growing in importance. Theoretical analyses relating to the various methods are discussed and the depths of presentation are often governed by whether or not the information is readily available elsewhere. Thus, for example, a considerable amount of space is devoted to eddy current theory at what the author considers to be a reasonable standard and not, as usually experienced, in either a too elementary manner or at a level appreciated only by a postgraduate theoretical physicist. The inclusion of the introductory chapter is intended to acquaint the reader with some of the philosophy of NDT and to compare, briefly, the relative performances of the more important methods of testing.
This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.
Electromagnetic Nondestructive Evaluation (ENDE) is a technique crucial to a great many engineering activities, as well as to environmental evaluation and protection issues. It is a discipline recognized for its theoretical insight, efficient models and simulations, robust data interpretation, and accurate instrumentation. This book presents contributions from the 22nd ENDE International Workshop, held in Saclay, France, in September 2017. It includes 1 of the 3 keynotes and 34 peer-reviewed and extended versions of the 47 oral contributions delivered during the workshop. Topics covered include static to THz electromagnetic; smart models and high-performance computations; advanced sensors; adaptive databases; model selection and the qualification of uncertainty; multi-sensor data fusion; the monitoring and diagnosis of mechanical structures; and innovative industrial applications. The book will be of interest to all those whose work involves the development or use of electromagnetic non-destructive evaluation.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Electromagnetic Non-destructive Evaluation (ENDE) is an invaluable, non-invasive diagnostic tool for the inspection, testing, evaluation and characterization of materials and structures. It has now become indispensible in a number of diverse fields ranging from biomedics to many branches of industry and engineering. This book presents the proceedings of the 24th International Workshop on Electromagnetic Nondestructive Evaluation, held in Chengdu, China from 11 - 14 September 2019. The 38 peer-reviewed and extended contributions included here were selected from 45 original submissions, and are divided into 7 sections: eddy current testing and evaluation; advanced sensors; analytical and numerical modeling; material characterization; inverse problem and signal processing; artificial intelligence in ENDE; and industrial applications of ENDE. The papers cover recent studies concerning the progress and application of electromagnetic (EM) fields in the non-destructive examination of materials and structures, and topics covered include evaluations at a micro-structural level, such as correlating the magnetic properties of a material with its grain structure, and a macroscopic level, such as techniques and applications for EM NDT&E. Recent developments and emerging materials such as advanced EM sensors, multi-physics NDT&E, intelligent data management and maintaining the integrity of structures are also explored. The book provides a current overview of developments in ENDE, and will be of interest to all those working in the field.
This second edition builds on the success of the first and covers the widespread introduction of computer technology, particularly the digitisation of data into the many branches of NDT. It surveys the new European (CEN) Standards and provisional CEN Standards on NDT, many of which are replacing British Standards. New NDT techniques not included in the first edition are also included.
Ultrasonic Methods of Non-Destructive Testing covers the basic principles and practices of ultrasonic testing, starting with the basic theory of vibration and propagation, design and properties and probes, and then proceeding to the principles and practice of the various ultrasonic techniques for different types of components and structures, both metallic and non-metallic. The design and operation of various types of equipment are covered and references to appropriate national and international standards are provided. Numerous applications are discussed comprehensively and special attention is paid to latest developments. A large number of references is provided so as to enable the reader to obtain further information.
A description of the state of the art in electromagnetic nondestructive evaluation (NDE) techniques. Topics covered range from magnetostatic to eddy current and microwave NDE methods. Advances in materials characterization, forward/simulation models, sensor design and inverse methodologies are discussed. The book also includes contributions on benchmark problems and solutions.