Electronic Tubes|Semiconductor Devices|Diode Circuits|Amplifier Circuits|Oscillator Circuits|Thyristor Circuits|Ic And Operational Amplifiers|Logic Circuits And Number Systems|Electrical Instruments|Electronic Instruments|Transducers|Appendices(A) Obje
Electrical engineering studies electricity and electromagnetism for creating devices to regulate and control electric current and electronic engineering is concerned with the creation of circuits that can contain and transmit electricity. This book on electrical and electronic engineering elucidates new techniques and applications in a multidisciplinary approach. The objective of this book is to give a general view of the different areas of these allied fields, and their applications. It presents the complex subject of electrical and electronic engineering in the most comprehensible and easy to understand language. This book, with its detailed analyses and data, will prove immensely beneficial to professionals and students involved in this area.
2010 First International Conference on Electrical and Electronics Engineering was held in Wuhan, China December 4-5. Advanced Electrical and Electronics Engineering book contains 72 revised and extended research articles written by prominent researchers participating in the conference. Topics covered include, Power Engineering, Telecommunication, Control engineering, Signal processing, Integrated circuit, Electronic amplifier, Nano-technologies, Circuits and networks, Microelectronics, Analog circuits, Digital circuits, Nonlinear circuits, Mixed-mode circuits, Circuits design, Sensors, CAD tools, DNA computing, Superconductivity circuits. Electrical and Electronics Engineering will offer the state of art of tremendous advances in Electrical and Electronics Engineering and also serve as an excellent reference work for researchers and graduate students working with/on Electrical and Electronics Engineering.
The book features selected high-quality papers presented at the International Conference on Computing, Power and Communication Technologies 2019 (GUCON 2019), organized by Galgotias University, India, in September 2019. Divided into three sections, the book discusses various topics in the fields of power electronics and control engineering, power and energy systems, and machines and renewable energy. This interesting compilation is a valuable resource for researchers, engineers and students.
The book's text and many photographs introduce readers to the renowned teachers and researchers who are still well known in engineering circles. Electrical engineering is a protean profession. Today the field embraces many disciplines that seem far removed from its roots in the telegraph, telephone, electric lamps, motors, and generators. To a remarkable extent, this chronicle of change and growth at a single institution is a capsule history of the discipline and profession of electrical engineering as it developed worldwide. Even when MIT was not leading the way, the department was usually quick to adapt to changing needs, goals, curricula, and research programs. What has remained constant throughout is the dynamic interaction of teaching and research, flexibility of administration, the interconnections with industrial progress and national priorities. The book's text and many photographs introduce readers to the renowned teachers and researchers who are still well known in engineering circles, among them: Vannevar Bush, Harold Hazen, Edward Bowles, Gordon Brown, Harold Edgerton, Ernst Guillemin, Arthur von Hippel, and Jay Forrester. The book covers the department's major areas of activity -- electrical power systems, servomechanisms, circuit theory, communications theory, radar and microwaves (developed first at the famed Radiation Laboratory during World War II), insulation and dielectrics, electronics, acoustics, and computation. This rich history of accomplishments shows moreover that years before "Computer Science" was added to the department's name such pioneering results in computation and control as Vannevar Bush's Differential Analyzer, early cybernetic devices and numerically controlled servomechanisms, the Whirlwind computer, and the evolution of time-sharing computation had already been achieved.
A third edition of this popular text which provides a foundation in electronic and electrical engineering for HND and undergraduate students. The book offers exceptional breadth of coverage without sacrificing depth. It uses a wealth of practical examples to illustrate the theory, and makes no excessive demands on the reader's mathematical skills. Ideal as a teaching tool or for self-study.
This popular dictionary, formerly published as the Penguin Dictionary of Electronics, has been extensively revised and updated, providing more than 5,000 clear, concise, and jargon-free A-Z entries on key terms, theories, and practices in the areas of electronics and electrical science. Topics covered include circuits, power, systems, magnetic devices, control theory, communications, signal processing, and telecommunications, together with coverage of applications areas such as image processing, storage, and electronic materials. The dictionary is enhanced by dozens of equations and nearly 400 diagrams. It also includes 16 appendices listing mathematical tables and other useful data, including essential graphical and mathematical symbols, fundamental constants, technical reference tables, mathematical support tools, and major innovations in electricity and electronics. More than 50 useful web links are also included with appropriate entries, accessible via a dedicated companion website. A Dictionary of Electronics and Electrical Engineering is the most up-to-date quick reference dictionary available in its field, and is a practical and wide-ranging resource for all students of electronics and of electrical engineering.
Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.