A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Reservoir Characterization of Tight Gas Sandstones: Exploration and Development is essential reading for those working in oil and gas exploration (both in industry and academia) as it contains chapters that help them further understand all aspects of tight gas reservoirs. In this book, experts in industry and academia update readers on new methods of tight gas reservoir modeling and evaluation. As there are very limited published books in the field of tight sandstones, this book will benefit readers by making them familiar with state-of-art methods of tight gas sandstones characterization and evaluation. - Features case studies from countries with considerable tight gas sandstones such as the United States, China, Canada and Australia - Includes recent developments in sedimentological, petrophysical, reservoir modeling and fracking technologies of tight gas sandstone reservoirs - Covers applications for the characterization and evaluation of tight sandstones for the methodologies presented
This book comprehensively identifies most reservoir rock properties using a very simple approach. It aids junior and senior reservoir and geology engineers to understand the main fundamentals of rock properties. The book provides examples and solutions that can help the readers to quickly understand the topic. This book covers reservoir rock properties and their relationship to each other. The book includes many figures, tables, exercises, and flow diagrams to simplify the topics in different approaches.
The study of reservoir and repository performance requires the integration of many different fields in Earth sciences, among them rock physics and geomechanics. The aim of this book is to emphasize how rock physics and geomechanics help to get a better insight into important issues linked to reservoir management for exploitation of natural resources, and to repository safety assessment for hazardous waste storage in geological environment. The studies presented here deal with the hydromechanical coupling in fractured rocks, the key experiments in safety assessment of repositories, the development of damaged zones during excavation in a shaley formation, the influence of temperature on the properties of shales, the poroelastic response of sandstones, the development and propagation of compaction bands in reservoir rocks, imaging techniques of geomaterials, the characterization and modelling of reservoirs using 4D seismic data, the mechanical behaviour of fractured rock masses, the petrophysical properties of fault zones, models for rock deformation by pressure solution and the elastic anisotropy in cracked rocks.
Working Guide to Reservoir Rock Properties and Fluid Flow provides an introduction to the properties of rocks and fluids that are essential in petroleum engineering. The book is organized into three parts. Part 1 discusses the classification of reservoirs and reservoir fluids. Part 2 explains different rock properties, including porosity, saturation, wettability, surface and interfacial tension, permeability, and compressibility. Part 3 presents the mathematical relationships that describe the flow behavior of the reservoir fluids. The primary reservoir characteristics that must be considered include: types of fluids in the reservoir, flow regimes, reservoir geometry, and the number of flowing fluids in the reservoir. Each part concludes with sample problems to test readers knowledge of the topic covered. - Critical properties of reservoir rocks Fluid (oil, water, and gas) - PVT relationships - Methods to calculate hydrocarbons initially in place - Dynamic techniques to assess reservoir performance - Parameters that impact well/reservoir performance over time
This book is a comprehensive treatment of the elastic volumetric response of sandstones to variations in stress. The theory and data presented apply to the deformations that occur, for example, due to withdrawal of fluid from a reservoir, or due to the redistribution of stresses caused by the drilling of a borehole. Although the emphasis is on reservoir-type sandstones, results and methods discussed are also applicable to other porous rocks.Part One concerns the effect of stress on deformation and discusses porous rock compressibility coefficients. Elasticity theory is used to derive relationships between the porous rock compressibility coefficients, the porosity, and the mineral grain compressibility. Theoretical bounds on the compressibility coefficients are derived. The concept of effective stress coefficients is examined, as is the integrated form of the stress-strain relationships. Undrained compression and induced pore pressures are treated within the same general framework. Part One is concluded with a brief, elementary introduction to Biot's theory of poroelasticity. All the results in Part One are illustrated and verified with extensive references to published compressibility data.Part Two deals with the relationship between pore structure and compressibility, and presents methods that permit quantitative prediction of the compressibility coefficients. Two- and three-dimensional models of tubular pores, spheroidal pores, and crack-like "grain boundary" voids are analyzed. A critical review is made of various methods that have been proposed to relate the effective elastic moduli (bulk and shear) of a porous material to its pore structure. Methods for extracting pore aspect ratio distributions from stress-strain data or from acoustic measurements are presented, along with applications to actual sandstone data.Part Three is a brief summary of experimental techniques that are used to measure porous rock compressibilities in the laboratory.The information contained in this volume is of interest to petroleum engineers, specifically those involved with reservoir modeling, petroleum geologists, geotechnical engineers, hydrologists and geophysicists.
Unconventional resources with commercial interest in the world mainly include heavy oils, shales, coalbed methane, and tight gas sands. The production and development of these resources has changed the global energy supply pattern. Quantitative interpretation of geophysical data in the exploration, well-logging, and engineering development of unconventional resources requires a comprehensive understanding of physical properties of rocks and their relationships. The research of rock physics provides an interdisciplinary treatment of physical properties, whether related to geological, geophysical, or geomechanical methodologies. The development of new rock physics methods is essential when integrating core, well-log, seismic data to improve the accuracy of formation evaluation and reservoir characterization. The composition, internal structure, and thermodynamic environment of reservoir rocks are complex and vary with different regions. This becomes particularly evident for unconventional reservoirs with strong macro- and micro-scopic heterogeneities. The diversity of exploration targets and complexity of reservoir characteristics pose great challenges to the applicability of existing rock physics experiments and theories. There are potential risks in directly using existing empirical relations and physical models to guide geophysical interpretation since spurious results may occur. Therefore, it is imperative to explore more applicable rock physics methods according to the petrophysical nature of actual reservoirs.