Eigenvalues of Matrices

Eigenvalues of Matrices

Author: Francoise Chatelin

Publisher: SIAM

Published: 2013-01-03

Total Pages: 428

ISBN-13: 1611972450

DOWNLOAD EBOOK

A comprehensive and accessible guide to the calculation of eigenvalues of matrices, ideal for undergraduates, or researchers/engineers in industry.


A First Course in Linear Algebra

A First Course in Linear Algebra

Author: Kenneth Kuttler

Publisher:

Published: 2020

Total Pages: 586

ISBN-13:

DOWNLOAD EBOOK

"A First Course in Linear Algebra, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course for the general students who have an understanding of basic high school algebra and intend to be users of linear algebra methods in their profession, from business & economics to science students. All major topics of linear algebra are available in detail, as well as justifications of important results. In addition, connections to topics covered in advanced courses are introduced. The textbook is designed in a modular fashion to maximize flexibility and facilitate adaptation to a given course outline and student profile. Each chapter begins with a list of student learning outcomes, and examples and diagrams are given throughout the text to reinforce ideas and provide guidance on how to approach various problems. Suggested exercises are included at the end of each section, with selected answers at the end of the textbook."--BCcampus website.


Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems

Author: Yousef Saad

Publisher: SIAM

Published: 2011-01-01

Total Pages: 292

ISBN-13: 9781611970739

DOWNLOAD EBOOK

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.


The Matrix Eigenvalue Problem

The Matrix Eigenvalue Problem

Author: David S. Watkins

Publisher: SIAM

Published: 2007-01-01

Total Pages: 452

ISBN-13: 9780898717808

DOWNLOAD EBOOK

The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.


Spectra and Pseudospectra

Spectra and Pseudospectra

Author: Lloyd N. Trefethen

Publisher: Princeton University Press

Published: 2005-08-07

Total Pages: 634

ISBN-13: 9780691119465

DOWNLOAD EBOOK

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.


Notes on Diffy Qs

Notes on Diffy Qs

Author: Jiri Lebl

Publisher:

Published: 2019-11-13

Total Pages: 468

ISBN-13: 9781706230236

DOWNLOAD EBOOK

Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.


C*-Algebras and Operator Theory

C*-Algebras and Operator Theory

Author: Gerald J. Murphy

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 297

ISBN-13: 0080924964

DOWNLOAD EBOOK

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.


An Introduction to Random Matrices

An Introduction to Random Matrices

Author: Greg W. Anderson

Publisher: Cambridge University Press

Published: 2010

Total Pages: 507

ISBN-13: 0521194520

DOWNLOAD EBOOK

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.