This book presents recent research in the area of hygrothermal building performance, acoustic and natural lighting performance in buildings, phase change materials (PCM) and energy storage. Discussing the state of the art in the field, and covering topics relevant to variety of engineering disciplines, such as civil, materials and mechanical engineering, it will appeal to scientists, students, practitioners, lecturers and other stakeholders.
The Whole Building Handbook is a compendium of all the issues and strategies that architects need to understand to design and construct sustainable buildings for a sustainable society. The authors move beyond the current definition of sustainability in architecture, which tends to focus on energy-efficiency, to include guidance for architecture that promotes social cohesion, personal health, renewable energy sources, water and waste recycling systems, permaculture, energy conservation - and crucially, buildings in relation to their place. The authors offer a holistic approach to sustainable architecture and authoritative technical advice, on: * How to design and construct healthy buildings, through choosing suitable materials, healthy service systems, and designing a healthy and comfortable indoor climate, including solutions for avoiding problems with moisture, radon and noise as well as how to facilitate cleaning and maintenance. * How to design and construct buildings that use resources efficiently, where heating and cooling needs and electricity use is minimized and water-saving technologies and garbage recycling technologies are used. * How to 'close' organic waste, sewage, heat and energy cycles. For example, how to design a sewage system that recycles nutrients. * Includes a section on adaptation of buildings to local conditions, looking at how a site must be studied with respect to nature, climate and community structure as well as human activities. The result is a comprehensive, thoroughly illustrated and carefully structured textbook and reference.
Design and build energy-efficient steel-framed houses-as a practical alternative to wood. As high-quality wood becomes scarcer and more expensive, residential builders are turning to steel as the building material of choice. Now you can improve your bottom line by learning to design and build steel-framed residential structures that are energy efficient, low in cost, and easy to build. Using examples from award-winning houses, this clear, step-by-step guide provides everything a residential contractor needs to know to build a steel-framed house--quickly and easily. You'll discover how to select the right materials and tools. . .use energy-efficient HVAC units, appliances, and lighting. . .choose the best windows and doors. . .and optimize landscaping and solar design. The book will enable you to: overcome steel's thermal deficiencies through proper design and insulation--and surpass the energy efficiency of traditional building materials; conduct your own Model Energy Code energy analysis for compliance with HUD regulations; explore CABO- and UBC-approved steel framing details for a complete two-bedroom house plan. With lots of money-saving tips on ordering and using proper building materials--plus professional advice on applying traditional and new methods of interior and exterior insulation--this is the most complete and practical resource available on a subject of increasing importance to residential builders and designers.
The design and construction of the appropriate building envelope is one of the most effective ways for improving a building's thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact. Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation - Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes - Laboratory tests on existing insulation to quantify the actual performances - Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies - Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios - Integrated evaluations between various aspects such as comfort, energy saving, and sustainability
Construction productivity-how well, how quickly, and at what cost buildings and infrastructure can be constructed-directly affects prices for homes and consumer goods and the robustness of the national economy. Industry analysts differ on whether construction industry productivity is improving or declining. Still, advances in available and emerging technologies offer significant opportunities to improve construction efficiency substantially in the 21st century and to help meet other national challenges, such as environmental sustainability. Advancing the Competitiveness and Efficiency of the U.S. Construction Industry identifies five interrelated activities that could significantly improve the quality, timeliness, cost-effectiveness, and sustainability of construction projects. These activities include widespread deployment and use of interoperable technology applications; improved job-site efficiency through more effective interfacing of people, processes, materials, equipment, and information; greater use of prefabrication, preassembly, modularization, and off-site fabrication techniques and processes; innovative, widespread use of demonstration installations; and effective performance measurement to drive efficiency and support innovation. The book recommends that the National Institute of Standards and Technology work with industry leaders to develop a collaborative strategy to fully implement and deploy the five activities
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
Prospective homeowners will welcome this introduction to a durable, energy-efficient new building technology: insulating concrete forms (ICFs). Written by a top expert in the field, and organized in an accessible question-and-answer form, it will help homebuyers decide whether an ICF is right for them and how to get the most for their money. Every aspect of planning and construction is covered, from exactly what an ICF is to the intricacies of building a concrete house, from choosing a contractor to selecting a suitable design for the system. There’s crucial advice on how to make sure construction goes smoothly, diagrams and photos to illustrate every point, beautiful ICF homes on display, and explanations of how these homes differ from conventional ones and why they cost less to maintain.
Sustainable Construction Technologies: Life-Cycle Assessment provides practitioners with a tool to help them select technologies that are financially advantageous even though they have a higher initial cost. Chapters provide an overview of LCA and how it can be used in conjunction with other indicators to manage construction. Topics covered include indoor environment quality, energy efficiency, transport, water reuse, materials, land use and ecology, and more. The book presents a valuable tool for construction professionals and researchers that want to apply sustainable construction techniques to their projects. Practitioners will find the international case studies and discussions of worldwide regulation and standards particularly useful. - Provides a framework for analyzing sustainable construction technologies and economic viability - Introduces key credit criteria for different sustainable construction technologies - Covers the most relevant construction areas - Includes technologies that can be employed during the process of construction, or to the product of the construction process, i.e. buildings - Analyzes international rating systems and provides supporting case studies
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies