World soils contain about 1500 gigatons of organic carbon. This large carbon reserve can increase atmospheric concentrations of CO2 by soil misuse or mismanagement, or it can reverse the 'greenhouse' effect by judicious land use and proper soil management. Soil Processes and the Carbon Cycle describes soil processes and their effects on the global carbon cycle while relating soil properties to soil quality and potential and actual carbon reserves in the soil. In addition, this book deals with modeling the carbon cycle in soil, and with methods of soil carbon determinations.
Despite effective global-scale legislation to restrict the emissions of nitrogen (N) into the atmosphere, atmospheric deposition of N remains high in many forested regions. In addition, many N-impacted forests still retain the imprint of N saturation, such as altered species composition and leaching of essential base cations. Accordingly, we need a further understanding of the complexities of N cycling in forest ecosystems and the effects of excess N on forest biodiversity and biogeochemical cycling. This volume explores these complexities, including effects on plants, plant assemblages, and forest biogeochemistry, by synthesizing research from Asia, Europe, and North America. Because of the widespread nature of current declines in N deposition, this book ends with a look to the future as N-impacted forests experience a return to lower levels of atmospheric deposition of N.
Global Change and Forest Soils: Cultivating Stewardship of a Finite Natural Resource, Volume 36, provides a state-of-the-science summary and synthesis of global forest soils that identifies concerns, issues and opportunities for soil adaptation and mitigation as external pressures from global changes arise. Where, how and why some soils are resilient to global change while others are at risk is explored, as are upcoming train wrecks and success stories across boreal, temperate, and tropical forests. Each chapter offers multiple sections written by leading soil scientists who comment on wildfires, climate change and forest harvesting effects, while also introducing examples of current global issues. Readers will find this book to be an integrated, up-to-date assessment on global forest soils. - Presents sections on boreal, temperate and tropical soils for a diverse audience - Serves as an important reference source for anyone interested in both a big-picture assessment of global soil issues and an in-depth examination of specific environmental topics - Provides a unique synthesis of forest soils and their collective ability to respond to global change - Offers chapters written by leading soil scientists - Prepares readers to meet the daily challenges of drafting multi-resource environmental science and policy documents
For the past 4 billion years, the chemistry of the Earth's surface, where all life exists, has changed remarkably. Historically, these changes have occurred slowly enough to allow life to adapt and evolve. In more recent times, the chemistry of the Earth is being altered at a staggering rate, fueled by industrialization and an ever-growing human population. Human activities, from the rapid consumption of resources to the destruction of the rainforests and the expansion of smog-covered cities, are all leading to rapid changes in the basic chemistry of the Earth. The Third Edition of Biogeochemistry considers the effects of life on the Earth's chemistry on a global level. This expansive text employs current technology to help students extrapolate small-scale examples to the global level, and also discusses the instrumentation being used by NASA and its role in studies of global change. With the Earth's changing chemistry as the focus, this text pulls together the many disparate fields that are encompassed by the broad reach of biogeochemistry. With extensive cross-referencing of chapters, figures, and tables, and an interdisciplinary coverage of the topic at hand, this text will provide an excellent framework for courses examining global change and environmental chemistry, and will also be a useful self-study guide. Emphasizes the effects of life on the basic chemistry of the atmosphere, the soils, and seawaters of the EarthCalculates and compares the effects of industrial emissions, land clearing, agriculture, and rising population on Earth's chemistrySynthesizes the global cycles of carbon, nitrogen, phosphorous, and sulfur, and suggests the best current budgets for atmospheric gases such as ammonia, nitrous oxide, dimethyl sulfide, and carbonyl sulfideIncludes an extensive review and up-to-date synthesis of the current literature on the Earth's biogeochemistry.
An interdisciplinary research unit consisting of 30 teams in the natural, economic and social sciences analyzed biodiversity and ecosystem services of a mountain rainforest ecosystem in the hotspot of the tropical Andes, with special reference to past, current and future environmental changes. The group assessed ecosystem services using data from ecological field and scenario-driven model experiments, and with the help of comparative field surveys of the natural forest and its anthropogenic replacement system for agriculture. The book offers insights into the impacts of environmental change on various service categories mentioned in the Millennium Ecosystem Assessment (2005): cultural, regulating, supporting and provisioning ecosystem services. Examples focus on biodiversity of plants and animals including trophic networks, and abiotic/biotic parameters such as soils, regional climate, water, nutrient and sediment cycles. The types of threats considered include land use and climate changes, as well as atmospheric fertilization. In terms of regulating and provisioning services, the emphasis is primarily on water regulation and supply as well as climate regulation and carbon sequestration. With regard to provisioning services, the synthesis of the book provides science-based recommendations for a sustainable land use portfolio including several options such as forestry, pasture management and the practices of indigenous peoples. In closing, the authors show how they integrated the local society by pursuing capacity building in compliance with the CBD-ABS (Convention on Biological Diversity - Access and Benefit Sharing), in the form of education and knowledge transfer for application.
Advances in Agronomy, Volume 166, the latest release in this leading reference on agronomy, contains a variety of updates and highlights new advances in the field. Each chapter is written by an international board of authors. - Includes numerous, timely, state-of-the-art reviews on the latest advancements in agronomy - Features distinguished, well recognized authors from around the world - Builds upon this venerable and iconic review series - Covers the extensive variety and breadth of subject matter in the crop and soil sciences
A fascinating work that provides a wealth of information on one of the world’s most biodiverse ecosystems. This is the result of investigations by almost 30 groups of researchers from various disciplines. They performed ecosystem analyses following two gradients: an altitudinal gradient and a gradient of land use intensity and ecosystem regeneration following human use. Based on these analyses, this volume discusses these findings in a huge variety of subject areas.
This updated and expanded second edition of a much lauded work provides a current overview of the impacts of climate change on tropical forests. The authors also investigate past, present and future climatic influences on the ecosystems with the highest biodiversity on the planet. Tropical Rainforest Responses to Climatic Change, Second Edition, looks at how tropical rain forest ecology is altered by climate change, rather than simply seeing how plant communities were altered. Shifting the emphasis on to ecological processes, e.g. how diversity is structured by climate and the subsequent impact on tropical forest ecology, provides the reader with a more comprehensive coverage. A major theme of the book is the interaction between humans, climate and forest ecology. The authors, all foremost experts in their fields, explore the long term occupation of tropical systems, the influence of fire and the future climatic effects of deforestation, together with anthropogenic emissions. Incorporating modelling of past and future systems paves the way for a discussion of conservation from a climatic perspective, rather than the usual plea to stop logging. This second edition provides an updated text in this rapidly evolving field. The existing chapters are revised and updated and two entirely new chapters deal with Central America and the effect of fire on wet forest systems. In the first new chapter, the paleoclimate and ecological record from Central America (Lozano, Correa, Bush) is discussed, while the other deals with the impact of fire on tropical ecosystems. It is hoped that Jonathon Overpeck, who has been centrally involved in the 2007 and 2010 IPCC reports, will provide a Foreword to the book.