Effects of Interface Coating and Nitride Enhancing Additive on Properites of Hi-Nicalon SiC Fiber Reinforced Reaction-bonded Silicon Nitride Composites

Effects of Interface Coating and Nitride Enhancing Additive on Properites of Hi-Nicalon SiC Fiber Reinforced Reaction-bonded Silicon Nitride Composites

Author: Ramakrishna T. Bhatt

Publisher:

Published: 2000

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matirix composites (SiC/RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained ~24 vol % of aligned 14 ♯m diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strenght properties of SiC/RBSN matrix composites were evaluated. Results indicate that all three coated fibers, the thickness of the coating decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating.


Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon Sic Fiber Reinforced Reaction-Bonded Silicon Nitride Composite

Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon Sic Fiber Reinforced Reaction-Bonded Silicon Nitride Composite

Author: National Aeronautics and Space Adm Nasa

Publisher: Independently Published

Published: 2018-09-27

Total Pages: 36

ISBN-13: 9781724082459

DOWNLOAD EBOOK

Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model. Bhatt, Ramakrishana T. and Hull, David R. and Eldridge, Jeffrey I. and Babuder, Raymond Glenn Research Center NASA/TM-2000-210211, E-12330, NAS 1.15:210211


Ceramic Fibers and Coatings

Ceramic Fibers and Coatings

Author: Committee on Advanced Fibers for High-Temperature Ceramic Composites

Publisher: National Academies Press

Published: 1998-05-05

Total Pages: 112

ISBN-13: 0309569036

DOWNLOAD EBOOK

High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.


Handbook of Composite Reinforcements

Handbook of Composite Reinforcements

Author: Stuart M. Lee

Publisher: John Wiley & Sons

Published: 1996-12-17

Total Pages: 736

ISBN-13: 9780471188612

DOWNLOAD EBOOK

This comprehensive single volume handbook covers every aspect of reinforcement science, from hands-on subjects, such as manual 'lay-up' processing, to theoretical discussions concerning rheology and modeling. Taken from the recently published six volume International Encyclopedia of Composites, this reference volume offers scholarly and practical knowledge of distinguished industry-experts, academics, and government researchers in one accessible and informative handbook. Fibers, processes, and composite reinforcement types, as well as relevant miscellaneous subjects such as property relationships, manufacturing, hybrid reinforcements, and modeling are given detailed treatment. Engineers, materials scientists, and technologists will find the Composite Reinforcement Handbook an invaluable tool.


Interfaces in Particle and Fibre Reinforced Composites

Interfaces in Particle and Fibre Reinforced Composites

Author: Kheng-Lim Goh

Publisher: Woodhead Publishing

Published: 2019-11-27

Total Pages: 584

ISBN-13: 0081027311

DOWNLOAD EBOOK

Interfaces in Particle and Fibre-Reinforced Composites: From Macro- to Nanoscale addresses recent research findings on the particle-matrix interface at different length scales. The book's main focus is on the reinforcement of materials by particles that can result in a composite material of high stiffness and strength, but it also focuses on how the particle interacts with the (matrix) material, which may be a polymer, biological-based material, ceramic or conventional metal. The different types of particle reinforced composites are discussed, as is load transfer at the particle-matrix interface. Readers will learn how to select materials and about particle structure. Significant progress has been made in applying these approaches, thus making this book a timely piece on recent research findings on the particle-matrix interface at different length scales. - Features wide coverage, from polymer, to ceramics and metal-based particulate composites - Structured in a logical order to cover fundamental studies, computer simulations, experimental techniques and characterization