In recent times, remarkable progress has taken place in the field of autonomous vehicles, reshaping industries such as logistics, transportation, defense, and more. The quest for achieving fully autonomous systems has been a thrilling yet demanding journey, as researchers and engineers continually push the limits of technological ingenuity. Autonomous Vehicles - Applications and Perspectives delves into the field of autonomous vehicles across eight chapters that cover various facets of this domain. The book is organized into four sections: "Introduction", "Autonomous Vehicles Enabling Technologies", "Autonomous Vehicles Applications and Potentials", and "Challenges and Perspectives". Its main goal is to provide an informative resource for those interested in autonomous vehicles, inspiring progress and discussions for researchers, students, and professionals alike.
This book presents the proceedings of the 6th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA-2017), held in Bhubaneswar, Odisha. The event brought together researchers, scientists, engineers, and practitioners to exchange their new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. The book is divided into two volumes: Information and Decision Sciences, and Intelligent Engineering Informatics. This volume covers broad areas of Information and Decision Sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management & networks, sensor networks, signal processing, wireless networks, protocols & architectures etc. The book also offers a valuable resource for students at the post-graduate level in various engineering disciplines.
This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.
Anyone who has ever shopped for a new smart phone, laptop, or other tech gadget knows that staying connected is crucial. There is a lot of discussion over which service provider offers the best coverage—enabling devices to work anywhere and at any time—with 4G and LTE becoming a pervasive part of our everyday language. The Handbook of Research on Next Generation Mobile Communication Systems offers solutions for optimal connection of mobile devices. From satellite signals to cloud technologies, this handbook focuses on the ways communication is being revolutionized, providing a crucial reference source for consumers, researchers, and business professionals who want to be on the frontline of the next big development in wireless technologies. This publication features a wide variety of research-based articles that discuss the future of topics such as bandwidth, energy-efficient power, device-to-device communication, network security and privacy, predictions for 5G communication systems, spectrum sharing and connectivity, and many other relevant issues that will influence our everyday use of technology.
This book addresses the major challenges in realizing unmanned aerial vehicles (UAVs) in IoT-based Smart Cities. The challenges tackled vary from cost and energy efficiency to availability and service quality. The aim of this book is to focus on both the design and implementation aspects of the UAV-based approaches in IoT-enabled smart cities’ applications that are enabled and supported by wireless sensor networks, 5G, and beyond. The contributors mainly focus on data delivery approaches and their performability aspects. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies. Involves the most up to date unmanned aerial vehicles (UAV) assessment and evaluation approaches Includes innovative operational ideas in agriculture, surveillance, rescue, etc. Pertains researchers, scientists, engineers and practitioners in the field of smart cities, IoT, and communications Fadi Al-Turjman received his Ph.D. from Queen’s University, Canada. He is a full professor and a research center director at Near East University, Nicosia. He is a leading authority in the area of IoT and intelligent systems. His publication history spans over 250 publications inaddition to his editorialship in top journals such as the IEEE Communication Surveys and Tutorials, and the Elsevier Sustaibable Cities and Sociaty.
"An excellent book for those who are interested in learning the current status of research and development . . . [and] who want to get a comprehensive overview of the current state-of-the-art." —E-Streams This book provides up-to-date information on research and development in the rapidly growing area of networks based on the multihop ad hoc networking paradigm. It reviews all classes of networks that have successfully adopted this paradigm, pointing out how they penetrated the mass market and sparked breakthrough research. Covering both physical issues and applications, Mobile Ad Hoc Networking: Cutting Edge Directions offers useful tools for professionals and researchers in diverse areas wishing to learn about the latest trends in sensor, actuator, and robot networking, mesh networks, delay tolerant and opportunistic networking, and vehicular networks. Chapter coverage includes: Multihop ad hoc networking Enabling technologies and standards for mobile multihop wireless networking Resource optimization in multiradio multichannel wireless mesh networks QoS in mesh networks Routing and data dissemination in opportunistic networks Task farming in crowd computing Mobility models, topology, and simulations in VANET MAC protocols for VANET Wireless sensor networks with energy harvesting nodes Robot-assisted wireless sensor networks: recent applications and future challenges Advances in underwater acoustic networking Security in wireless ad hoc networks Mobile Ad Hoc Networking will appeal to researchers, developers, and students interested in computer science, electrical engineering, and telecommunications.
Explore foundational and advanced issues in UAV cellular communications with this cutting-edge and timely new resource UAV Communications for 5G and Beyond delivers a comprehensive overview of the potential applications, networking architectures, research findings, enabling technologies, experimental measurement results, and industry standardizations for UAV communications in cellular systems. The book covers both existing LTE infrastructure, as well as future 5G-and-beyond systems. UAV Communications covers a range of topics that will be of interest to students and professionals alike. Issues of UAV detection and identification are discussed, as is the positioning of autonomous aerial vehicles. More fundamental subjects, like the necessary tradeoffs involved in UAV communication are examined in detail. The distinguished editors offer readers an opportunity to improve their ability to plan and design for the near-future, explosive growth in the number of UAVs, as well as the correspondingly demanding systems that come with them. Readers will learn about a wide variety of timely and practical UAV topics, like: Performance measurement for aerial vehicles over cellular networks, particularly with respect to existing LTE performance Inter-cell interference coordination with drones Massive multiple-input and multiple-output (MIMO) for Cellular UAV communications, including beamforming, null-steering, and the performance of forward-link C&C channels 3GPP standardization for cellular-supported UAVs, including UAV traffic requirements, channel modeling, and interference challenges Trajectory optimization for UAV communications Perfect for professional engineers and researchers working in the field of unmanned aerial vehicles, UAV Communications for 5G and Beyond also belongs on the bookshelves of students in masters and PhD programs studying the integration of UAVs into cellular communication systems.
UNMANNED AERIAL VEHICLES FOR INTERNET OF THINGS This comprehensive book deeply discusses the theoretical and technical issues of unmanned aerial vehicles for deployment by industries and civil authorities in Internet of Things (IoT) systems. Unmanned aerial vehicles (UAVs) has become one of the rapidly growing areas of technology, with widespread applications covering various domains. UAVs play a very important role in delivering Internet of Things (IoT) services in small and low-power devices such as sensors, cameras, GPS receivers, etc. These devices are energy-constrained and are unable to communicate over long distances. The UAVs work dynamically for IoT applications in which they collect data and transmit it to other devices that are out of communication range. Furthermore, the benefits of the UAV include deployment at remote locations, the ability to carry flexible payloads, reprogrammability during tasks, and the ability to sense for anything from anywhere. Using IoT technologies, a UAV may be observed as a terminal device connected with the ubiquitous network, where many other UAVs are communicating, navigating, controlling, and surveilling in real time and beyond line-of-sight. The aim of the 15 chapters in this book help to realize the full potential of UAVs for the IoT by addressing its numerous concepts, issues and challenges, and develops conceptual and technological solutions for handling them. Applications include such fields as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. In addition, the book covers: Efficient energy management systems in UAV-based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety. Audience: Researchers in computer science, Internet of Things (IoT), electronics engineering, as well as industries that use and deploy drones and other unmanned aerial vehicles.
This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.