Effective Field Theories of Baryons and Mesons, Or, what Do Quarks Do?.

Effective Field Theories of Baryons and Mesons, Or, what Do Quarks Do?.

Author:

Publisher:

Published: 1995

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N2. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.


The Quark Structure of Hadrons

The Quark Structure of Hadrons

Author: Claude Amsler

Publisher: Springer

Published: 2018-10-30

Total Pages: 277

ISBN-13: 3319985272

DOWNLOAD EBOOK

Novel forms of matter, such as states made of gluons (glueballs), multiquark mesons or baryons and hybrid mesons are predicted by low energy QCD, for which several candidates have recently been identified. Searching for such exotic states of matter and studying their production and decay properties in detail has become a flourishing field at the experimental facilities now available or being built - e.g. BESIII in Beijing, BELLE II at SuperKEKB, GlueX at Jefferson Lab, PANDA at FAIR, J-PARC and in the upgraded LHC experiments, in particular LHCb. A modern primer in the field is required so as to both revive and update the teaching of a new generation of researchers in the field of QCD. These lectures on hadron spectroscopy are intended for Master and PhD students and have been originally developed for a course delivered at the Stefan Meyer Institute of the Austrian Academy of Sciences. They are phenomenologically oriented and intended as complementary material for basic courses in particle and nuclear physics. The book describes the spectra of light and heavy mesons and baryons, and introduces the fundamental properties based on symmetries. Further, it derives multiplet structures, mixing angle, decay coupling constants, magnetic moments of baryons, and predictions for multiquark states and compares these with suitable experimental data. Basic methods of calculating decay angular distributions and determining masses and widths of resonances are also presented. The appendices provide students and newcomers to the field with the necessary background information, and include a set of problems and solutions.


Introduction to Effective Field Theory

Introduction to Effective Field Theory

Author: C. P. Burgess

Publisher: Cambridge University Press

Published: 2020-12-10

Total Pages: 665

ISBN-13: 1108915892

DOWNLOAD EBOOK

Using examples from across the sub-disciplines of physics, this introduction shows why effective field theories are the language in which physical laws are written. The tools of effective field theory are demonstrated using worked examples from areas including particle, nuclear, atomic, condensed matter and gravitational physics. To bring the subject within reach of scientists with a wide variety of backgrounds and interests, there are clear physical explanations, rigorous derivations, and extensive appendices on background material, such as quantum field theory. Starting from undergraduate-level quantum mechanics, the book gets to state-of-the-art calculations using both relativistic and nonrelativistic few-body and many-body examples, and numerous end-of-chapter problems derive classic results not covered in the main text. Graduate students and researchers in particle physics, condensed matter physics, nuclear physics, string theory, and mathematical physics more generally, will find this book ideal for both self-study and for organized courses on effective field theory.


Nuclear and Particle Physics

Nuclear and Particle Physics

Author: Mira Dey

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 118

ISBN-13: 3642849652

DOWNLOAD EBOOK

"Nuclear and Particle Physics" both have been very distinct subjects for decades, and are now developing more and more interfaces. Thus, hitherto typical methods of particle physics are adopted by nuclear physics. The authors try to build bridges between both fields and give nuclear physicists a thorough introduction from the fundamentals of particle physics to current research in this field. Contents: - Introduction - Preliminaries and Simple Models - Currents, Anomaly, Solitons, and Fractional Fermions - More on Chiral Symmetry - Introduction to Instantons - Relevance of Instantons - Chiral Perturbation Theory - The Topological and Non-Topological Soliton Model - QCD Sum Rules - References


Effective Field Theories

Effective Field Theories

Author: Ulf-G Meißner

Publisher: Cambridge University Press

Published: 2022-08-25

Total Pages: 625

ISBN-13: 1108476988

DOWNLOAD EBOOK

A detailed and comprehensive exploration of the foundations and fundamentals of effective field theories.


Mesons And Baryons: Systematization And Methods Of Analysis

Mesons And Baryons: Systematization And Methods Of Analysis

Author: A V Anisovich

Publisher: World Scientific

Published: 2008-09-04

Total Pages: 603

ISBN-13: 9814470902

DOWNLOAD EBOOK

This book is devoted to the investigation of the strongly interacting hadrons — to a quark model operating with effective color particles, constituent quarks, massive effective gluons and diquarks. The study of strong interactions based on effective constituent particles requires a solid ground of experimental data, which we now have at our disposal with the serious progress made in the investigation of hadrons, especially meson states.The present understanding of QCD applied to strong interactions can be distorted by prejudices. Therefore, the way followed by the quark model is to rely on the experiment and to restore the effective Hamiltonian on the basis of QCD on the one hand, and, on the other, of the spectral integral method.Baryon-baryon and antibaryon-baryon interactions are studied with the purpose of unambiguous applications of the written formulae to the interpretation of experimental data — to the observation of new meson and baryon resonances. The technique used is the spin-orbital momentum expansion of the amplitude. This method is our basic approach to the proper treatment of experimental data. The photon-induced reactions are also considered and the problem of form factors is discussed.


Effective Field Theories

Effective Field Theories

Author: Alexey A. Petrov

Publisher: World Scientific

Published: 2015-11-18

Total Pages: 318

ISBN-13: 9814434930

DOWNLOAD EBOOK

This book is a broad-based text intended to help the growing student body interested in constructing and applying methods of effective field theory to solve problems in their research. It begins with a review of using symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to construct various effective theories. A detailed discussion of canonical applications of effective field theory techniques with increasing complexity is given, including Fermi's weak interaction, heavy-quark effective theory, and soft-collinear effective theory. Applications of these techniques to study physics beyond the standard model, dark matter, and quantum and classical gravity are explored. Although most examples come from questions in high-energy physics, many of the methods can also be applied in condensed-matter settings. Appendices include various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.