Effective Dynamics of Stochastic Partial Differential Equations

Effective Dynamics of Stochastic Partial Differential Equations

Author: Jinqiao Duan

Publisher: Elsevier

Published: 2014-03-06

Total Pages: 283

ISBN-13: 0128012692

DOWNLOAD EBOOK

Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises


An Introduction to Stochastic Dynamics

An Introduction to Stochastic Dynamics

Author: Jinqiao Duan

Publisher: Cambridge University Press

Published: 2015-04-13

Total Pages: 313

ISBN-13: 1107075394

DOWNLOAD EBOOK

An accessible introduction for applied mathematicians to concepts and techniques for describing, quantifying, and understanding dynamics under uncertainty.


Stochastic Partial Differential Equations and Related Fields

Stochastic Partial Differential Equations and Related Fields

Author: Andreas Eberle

Publisher: Springer

Published: 2018-07-03

Total Pages: 565

ISBN-13: 3319749293

DOWNLOAD EBOOK

This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.


Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Author: Zhongqiang Zhang

Publisher: Springer

Published: 2017-09-01

Total Pages: 391

ISBN-13: 3319575112

DOWNLOAD EBOOK

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.


A Minicourse on Stochastic Partial Differential Equations

A Minicourse on Stochastic Partial Differential Equations

Author: Robert C. Dalang

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 230

ISBN-13: 3540859934

DOWNLOAD EBOOK

This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.


Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Author: Wilfried Grecksch

Publisher: World Scientific

Published: 2020-04-22

Total Pages: 261

ISBN-13: 9811209804

DOWNLOAD EBOOK

This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.


Stochastic Pdes And Modelling Of Multiscale Complex System

Stochastic Pdes And Modelling Of Multiscale Complex System

Author: Xiaopeng Chen

Publisher: World Scientific

Published: 2019-05-07

Total Pages: 238

ISBN-13: 981120036X

DOWNLOAD EBOOK

This volume is devoted to original research results and survey articles reviewing recent developments in reduction for stochastic PDEs with multiscale as well as application to science and technology, and to present some future research direction. This volume includes a dozen chapters by leading experts in the area, with a broad audience in mind. It should be accessible to graduate students, junior researchers and other professionals who are interested in the subject. We also take this opportunity to celebrate the contributions of Professor Anthony J Roberts, an internationally leading figure on the occasion of his 60th years birthday in 2017.


Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

Author: Mickaël D. Chekroun

Publisher: Springer

Published: 2014-12-23

Total Pages: 141

ISBN-13: 3319125206

DOWNLOAD EBOOK

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.


New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics

Author: Huaizhong Zhao

Publisher: World Scientific

Published: 2012

Total Pages: 458

ISBN-13: 9814360910

DOWNLOAD EBOOK

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.


General Stochastic Measures

General Stochastic Measures

Author: Vadym M. Radchenko

Publisher: John Wiley & Sons

Published: 2022-09-21

Total Pages: 276

ISBN-13: 1786308282

DOWNLOAD EBOOK

This book is devoted to the study of stochastic measures (SMs). An SM is a sigma-additive in probability random function, defined on a sigma-algebra of sets. SMs can be generated by the increments of random processes from many important classes such as square-integrable martingales and fractional Brownian motion, as well as alpha-stable processes. SMs include many well-known stochastic integrators as partial cases. General Stochastic Measures provides a comprehensive theoretical overview of SMs, including the basic properties of the integrals of real functions with respect to SMs. A number of results concerning the Besov regularity of SMs are presented, along with equations driven by SMs, types of solution approximation and the averaging principle. Integrals in the Hilbert space and symmetric integrals of random functions are also addressed. The results from this book are applicable to a wide range of stochastic processes, making it a useful reference text for researchers and postgraduate or postdoctoral students who specialize in stochastic analysis.