Effect of Cathodic Protection on Epoxy-coated Rebar

Effect of Cathodic Protection on Epoxy-coated Rebar

Author: S. Ray Taylor

Publisher:

Published: 1998

Total Pages: 66

ISBN-13:

DOWNLOAD EBOOK

Epoxy coating is widely used to mitigate the access of chloride ions to the surface of a rebar. However, corrosion at the point of physical defects in the coating necessitates rehabilitation. Based on its effectiveness in mitigating corrosion of uncoated rebars, we examined cathodic protection (CP) as a method for rehabilitating epoxy-coated rebars (ECR). Although it is well established that cathodic polarization of epoxy coatings on steel in aqueous conditions leads to disbondment of the coating, neither the conditions that lead to this phenomenon nor the actual occurrence of this disbondment process has been determined for ECR in concrete. Since the integrity of the bond between the rebar and the concrete is essential to the composite strengthening by the rebar, the relationships among CP, the integrity of the epoxy coating, and the strength of the rebar/concrete bond must be investigated. The objectives of this study were (1) to determine if CP can effectively mitigate corrosion of coated rebar without adversely affecting the rebar/concrete interface, and (2) to examine the effect of cathodic polarization on the disbonding characteristics of the epoxy coating/rebar interface in concrete. Fifty-five samples of No. 5 ECR with coating defects were exposed to CP. Tensile loading produced splitting failures of all samples. This mode of failure allows greater sensitivity to the contributions of concrete/rebar adhesion and friction than do pullout failures. All electrochemical tests indicated that the cathodic polarization levels and times of application used in this study were effective in preventing corrosion of embedded ECR. An important finding was that the CP protection levels and times had no effect on the splitting failure characteristics based on comparisons of 95 percent confidence intervals. Multiple parameters within the electrochemical impedance spectra indicated that the epoxy coating was delaminating from the steel at the periphery of the defects. This phenomenon was verified in a post mortem analysis of the samples using scanning electron microscopy. The immediate significance of this result is that CP current demands could increase over time. Even though the levels of delamination in this study did not affect mechanical performance, a protective CP level that does not induce film delamination should be explored.


Corrosion of Steel in Concrete Structures

Corrosion of Steel in Concrete Structures

Author: Amir Poursaee

Publisher: Woodhead Publishing

Published: 2023-02-20

Total Pages: 400

ISBN-13: 0323851320

DOWNLOAD EBOOK

Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. - Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete - Introduces the latest measuring methods, data collection, and advanced modeling techniques - Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices


Galvanized Steel Reinforcement in Concrete

Galvanized Steel Reinforcement in Concrete

Author: Stephen Yeomans

Publisher: Elsevier

Published: 2004-11-26

Total Pages: 316

ISBN-13: 0080472834

DOWNLOAD EBOOK

Reinforced concrete is one of the most widely used modern materials of construction. It is comparatively cheap, readily available, and suitable for a variety of building and construction applications. Galvanized Steel Reinforcement in Concrete provides a detailed resource covering all aspects of this important material. Both servicability and durability aspects are well covered, with all the information needed maximise the life of buildings constructed from it. Containing an up-to-date and comprehensive collection of technical information and data from world renound authors, it will be a valuable source of reference for academics, researchers, students and professionals alike. - Provides information vital to prolong the life of buildings constructed from this versatile material - Brings together a disparate body of knowledge from many parts of the world into a concise and authoritative text - Containing an up-to-date and comprehensive collection of technical information


Corrosion of Steel in Concrete

Corrosion of Steel in Concrete

Author: Luca Bertolini

Publisher: John Wiley & Sons

Published: 2013-02-26

Total Pages: 389

ISBN-13: 3527651713

DOWNLOAD EBOOK

Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.


Corrosion of Steel in Concrete

Corrosion of Steel in Concrete

Author: J.P. Broomfield

Publisher: CRC Press

Published: 1996-12-12

Total Pages: 263

ISBN-13: 0203475283

DOWNLOAD EBOOK

The corrosion of reinforcing steel in concrete is a major problem facing civil engineers and surveyors throughout the world today. There will always be a need to build stuctures in corrosive environments and it is therefore essential to address the problems that result. Corrosion of Steel in Concrete provides information on corrosion of steel in at


Eco-efficient Repair and Rehabilitation of Concrete Infrastructures

Eco-efficient Repair and Rehabilitation of Concrete Infrastructures

Author: Fernando Pacheco-Torgal

Publisher: Elsevier

Published: 2024-03-13

Total Pages: 457

ISBN-13: 0443134715

DOWNLOAD EBOOK

Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, Second Edition provides an updated state-of-the-art review on the latest advances in this important research field. The first section is brought fully up-to-date and focuses on deterioration assessment methods. Section two contains brand new chapters on innovative concrete repair and rehabilitation materials including: fly ash-based alkali-activated repair materials for concrete exposed to aggressive environments; repairing concrete structures with alkali-activated metakaolin mortars; concrete with micro encapsulated self-healing materials; concrete repaired with bacteria; concrete structures repaired with engineered cementitious composites; concrete repaired by electrodeposition; the assessment of concrete after repair operations and durability of concrete repair. The final section has also been amended to include six new chapters on design, Life-cycle cost analysis and life-cycle assessment. These chapters include maintenance strategies for concrete structures; a comparison of different repair methods; life cycle assessment of the effects of climate change on bridge deterioration; life-cycle-cost benefits of cathodic protection of concrete structures; life-cycle cost analyses for concrete bridges exposed to chlorides and life-cycle analysis of repair of concrete pavements. The book will be an essential reference resource for materials scientists, civil and structural engineers, architects, structural designers and contractors working in the construction industry. - Presents the latest research findings on eco-efficient repair and rehabilitation of concrete infrastructures - Provides comprehensive coverage from damage detection and assessment, to repair strategies, and structural health monitoring - Diverse author base offering insights on construction practice and employed technologies worldwide - Includes a section on innovative repair and rehabilitation materials, as well as case studies on life cycle cost analysis and LCA


An Introduction to Cathodic Protection

An Introduction to Cathodic Protection

Author: J. Paul Guyer

Publisher: Independently Published

Published: 2018-09-04

Total Pages: 390

ISBN-13: 9781720074281

DOWNLOAD EBOOK

Cathodic protection is a method to reduce corrosion by minimizing the difference in potential between anode and cathode. This is achieved by applying a current to the structure to be protected (such as a pipeline) from some outside source. When enough current is applied, the whole structure will be at one potential; thus, anode and cathode sites will not exist. Cathodic protection is commonly used on many types of structures, such as pipelines, underground storage tanks, locks, and ship hulls.