The book gives a comprehensive overview on the knowledge of virus infection relevant for humans and animals. For each virus family the molecular details of the virus particle and the viral replication cycle are described. In the case of virus types with relevance for human and/or animal health the data on molecular biology, genetics and virus-cell interaction are combined with those concerning, pathogenesis, epidemiology, clinics, prevention and therapy.
A renaissance of virus research is taking centre stage in biology. Empirical data from the last decade indicate the important roles of viruses, both in the evolution of all life and as symbionts of host organisms. There is increasing evidence that all cellular life is colonized by exogenous and/or endogenous viruses in a non-lytic but persistent lifestyle. Viruses and viral parts form the most numerous genetic matter on this planet.
Virus as Composition, Complexity, Quasispecies, Dynamics, and Biological Implications, Second Edition, explains the fundamental concepts surrounding viruses as complex populations during replication in infected hosts. Fundamental phenomena in virus behavior, such as adaptation to changing environments, capacity to produce disease, and the probability to be transmitted or respond to treatment all depend on virus population numbers. Concepts such as quasispecies dynamics, mutations rates, viral fitness, the effect of bottleneck events, population numbers in virus transmission and disease emergence, and new antiviral strategies are included. The book's main concepts are framed by recent observations on general virus diversity derived from metagenomic studies and current views on the origin and role of viruses in the evolution of the biosphere. - Features current views on key steps in the origin of life and origins of viruses - Includes examples relating ancestral features of viruses with their current adaptive capacity - Explains complex phenomena in an organized and coherent fashion that is easy to comprehend and enjoyable to read - Considers quasispecies as a framework to understand virus adaptability and disease processes
This volume – for pharmacologists, systems biologists, philosophers and historians of medicine – points to investigate new avenues in pharmacology research, by providing a full assessment of the premises underlying a radical shift in the pharmacology paradigm. The pharmaceutical industry is currently facing unparalleled challenges in developing innovative drugs. While drug-developing scientists in the 1990s mostly welcomed the transformation into a target-based approach, two decades of experience shows that this model is failing to boost both drug discovery and efficiency. Selected targets were often not druggable and with poor disease linkage, leading to either high toxicity or poor efficacy. Therefore, a profound rethinking of the current paradigm is needed. Advances in systems biology are revealing a phenotypic robustness and a network structure that strongly suggest that exquisitely selective compounds, compared with multitarget drugs, may exhibit lower than desired clinical efficacy. This appreciation of the role of polypharmacology has significant implications for tackling the two major sources of attrition in drug development, efficacy and toxicity. Integrating network biology and polypharmacology holds the promise of expanding the current opportunity space for druggable targets.
Within the past two decades, extraordinary new functions for the nucleolus have begun to appear, giving the field a new vitality and generating renewed excitement and interest. These new discoveries include both newly-discovered functions and aspects of its conventional role. The Nucleolus is divided into three parts: nucleolar structure and organization, the role of the nucleolus in ribosome biogenesis, and novel functions of the nucleolus.
Viral Polymerases: Structures, Functions and Roles as Antiviral Drug Targets presents in-depth study information on the structure and functions of polymerases and their roles in the lifecycle of viruses, and as drug targets. Viral polymerases constitute a vital component in the lifecycle of many viruses, such as human immunodeficiency virus (HIV), hepatitis viruses, influenza virus, and several others. They are essentially required for the replication of viruses. Thus, the polymerases that can be found in viruses (called viral polymerases) represent favorable targets for the design and development of antiviral drugs. - Provides comprehensive, state-of-the-art coverage on virus infections, the virus lifecycle, and mechanisms of polymerase inhibition - Analyzes the structure-activity relationships of inhibitors of each viral polymerase - Presents a consistent and comprehensive coverage of all aspects of viral polymerases, including structure, function and their role as antiviral drug targets
Many individual aspects of the dynamics and assembly of biological membranes have been studied in great detail. Cell biological approaches, advanced genetics, biophysics and biochemistry have greatly contributed to an increase in our knowledge in this field.lt is obvious however, that the three major membrane constituents - lipids, proteins and carbohydrates- are studied, in most cases separately and that a coherent overview of the various aspects of membrane biogenesis is not readily available. The NATO Advanced Study Institute on "New Perspectives in the Dynamics of Assembly of Biomembranes" intended to provide such an overview: it was set up to teach students and specialists the achievements obtained in the various research areas and to try and integrate the numerous aspects of membrane assembly into a coherent framework. The articles in here reflect this. Statting with detailed contributions on phospholipid structure, dynamics, organization and biogenesis, an up to date overview of the basic, lipidic backbone of biomembranes is given. Extensive progress is made in the research on membrane protein biosynthesis. In particular the post- and co-translational modification processes of proteins, the mechanisms of protein translocation and the sorting mechanisms which are necessary to direct proteins to their final, intra - or extracellular destination have been characterized in detail. Modern genetic approaches were indispensable in this research area: gene cloning, hybrid protein construction, site directed mutagenesis and sequencing techniques elucidated many functional aspects of specific nucleic acid and amino acid sequences.
New viral diseases are emerging continuously. Viruses adapt to new environments at astounding rates. Genetic variability of viruses jeopardizes vaccine efficacy. For many viruses mutants resistant to antiviral agents or host immune responses arise readily, for example, with HIV and influenza. These variations are all of utmost importance for human and animal health as they have prevented us from controlling these epidemic pathogens. This book focuses on the mechanisms that viruses use to evolve, survive and cause disease in their hosts. Covering human, animal, plant and bacterial viruses, it provides both the basic foundations for the evolutionary dynamics of viruses and specific examples of emerging diseases. - NEW - methods to establish relationships among viruses and the mechanisms that affect virus evolution - UNIQUE - combines theoretical concepts in evolution with detailed analyses of the evolution of important virus groups - SPECIFIC - Bacterial, plant, animal and human viruses are compared regarding their interation with their hosts
Encyclopedia of Virology, Fourth Edition, Five Volume Set builds on the solid foundation laid by the previous editions, expanding its reach with new and timely topics. In five volumes, the work provides comprehensive coverage of the whole virosphere, making this a unique resource. Content explores viruses present in the environment and the pathogenic viruses of humans, animals, plants and microorganisms. Key areas and concepts concerning virus classification, structure, epidemiology, pathogenesis, diagnosis, treatment and prevention are discussed, guiding the reader through chapters that are presented at an accessible level, and include further readings for those needing more specific information. More than ever now, with the Covid19 pandemic, we are seeing the huge impact viruses have on our life and society. This encyclopedia is a must-have resource for scientists and practitioners, and a great source of information for the wider public. Offers students and researchers a one-stop shop for information on virology not easily available elsewhere Fills a critical gap of information in a field that has seen significant progress in recent years Authored and edited by recognized experts in the field, with a range of different expertise, thus ensuring a high-quality standard