Dynamics and Control of Hybrid Mechanical Systems

Dynamics and Control of Hybrid Mechanical Systems

Author: Gennadi? Alekseevich Leonov

Publisher: World Scientific

Published: 2010

Total Pages: 261

ISBN-13: 9814282316

DOWNLOAD EBOOK

The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents. The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.


An Introduction to Hybrid Dynamical Systems

An Introduction to Hybrid Dynamical Systems

Author: Arjan J. van der Schaft

Publisher: Springer

Published: 2007-10-03

Total Pages: 189

ISBN-13: 1846285429

DOWNLOAD EBOOK

This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.


Dynamics And Control Of Hybrid Mechanical Systems

Dynamics And Control Of Hybrid Mechanical Systems

Author: Gennady A Leonov

Publisher: World Scientific

Published: 2010-01-13

Total Pages: 261

ISBN-13: 9814467014

DOWNLOAD EBOOK

The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization — a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents.The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.


Vehicle Dynamics and Control

Vehicle Dynamics and Control

Author: Rajesh Rajamani

Publisher: Springer Science & Business Media

Published: 2011-12-21

Total Pages: 516

ISBN-13: 1461414326

DOWNLOAD EBOOK

Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.


Introduction to Dynamics and Control in Mechanical Engineering Systems

Introduction to Dynamics and Control in Mechanical Engineering Systems

Author: Cho W. S. To

Publisher: John Wiley & Sons

Published: 2016-05-02

Total Pages: 317

ISBN-13: 111893492X

DOWNLOAD EBOOK

One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations.


Nonsmooth Mechanics

Nonsmooth Mechanics

Author: Bernard Brogliato

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 565

ISBN-13: 1447105575

DOWNLOAD EBOOK

Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: ::i; = g(x,u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q,q,u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or controller) that generally involves a state feedback loop, i. e. u= u(q, q, t, z), with z= Z(z, q, q, t) when the controller is a dynamic state feedback. Mechanical systems composed of rigid bodies interacting fall into this subclass. A general prop erty of systems as in (0. 1) and (0. 2) is that their solutions are nonsmooth (with respect to time): Nonsmoothness arises primarily from the occurence of impacts (or collisions, or percussions) in the dynamical behaviour, when the trajectories attain the surface f(x, t) = O. They are necessary to keep the trajectories within the subspace = {x : f(x, t) 2: O} of the system's state space.


Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems

Author: Andrew J. Kurdila

Publisher: John Wiley & Sons

Published: 2019-12-16

Total Pages: 514

ISBN-13: 1119524830

DOWNLOAD EBOOK

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Dynamics and Control of Industrial Cranes

Dynamics and Control of Industrial Cranes

Author: Keum-Shik Hong

Publisher: Springer

Published: 2019-01-30

Total Pages: 191

ISBN-13: 9811357706

DOWNLOAD EBOOK

This book introduces and develops the mathematical models used to describe crane dynamics, and explores established and emerging control methods employed for industrial cranes. It opens with a general introduction to the design and structure of various crane types including gantry cranes, rotary cranes, and mobile cranes currently being used for material handling processes. Mathematical models describing their dynamics for control purposes are developed via two different modeling approaches: lumped-mass and distributed parameter models. Control strategies applicable to real industrial problems are then discussed, including open-loop control, feedback control, boundary control, and hybrid control strategies. Finally, based on the methods covered in the book, future research directions are proposed for the advancement of crane technologies. This book can be used by graduate students, engineers, and researchers in the material handling industry including those working in warehouses, manufacturing, construction sites, ship building, seaports, container terminals, nuclear power plants, and in offshore engineering.


Handbook of Hybrid Systems Control

Handbook of Hybrid Systems Control

Author: Jan Lunze

Publisher: Cambridge University Press

Published: 2009-10-15

Total Pages: 583

ISBN-13: 0521765056

DOWNLOAD EBOOK

Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.


Kinematics and Dynamics of Multi-Body Systems

Kinematics and Dynamics of Multi-Body Systems

Author: J. Angeles

Publisher: Springer

Published: 2014-05-04

Total Pages: 344

ISBN-13: 3709143624

DOWNLOAD EBOOK

Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.