A Dynamical Systems Theory of Thermodynamics

A Dynamical Systems Theory of Thermodynamics

Author: Wassim M. Haddad

Publisher: Princeton University Press

Published: 2019-06-04

Total Pages: 744

ISBN-13: 0691190143

DOWNLOAD EBOOK

A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics. This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics. A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory. The book establishes a clear nexus between thermodynamic irreversibility, the second law of thermodynamics, and the arrow of time to further unify discreteness and continuity, indeterminism and determinism, and quantum mechanics and general relativity in the pursuit of understanding the most fundamental property of the universe—the entropic arrow of time.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


The Dynamical Systems Approach to Cognition

The Dynamical Systems Approach to Cognition

Author: Wolfgang Tschacher

Publisher: World Scientific

Published: 2003

Total Pages: 345

ISBN-13: 981256439X

DOWNLOAD EBOOK

The shared platform of the articles collected in this volume is usedto advocate a dynamical systems approach to cognition. It is arguedthat recent developments in cognitive science towards an account ofembodiment, together with the general approach of complexity theoryand dynamics, have a major impact on behavioral and cognitivescience.


Dynamical Systems in Theoretical Perspective

Dynamical Systems in Theoretical Perspective

Author: Jan Awrejcewicz

Publisher: Springer

Published: 2018-09-01

Total Pages: 411

ISBN-13: 3319965980

DOWNLOAD EBOOK

This book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painlevé equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.


Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch

Publisher: Academic Press

Published: 2004

Total Pages: 433

ISBN-13: 0123497035

DOWNLOAD EBOOK

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.


Qualitative Theory of Hybrid Dynamical Systems

Qualitative Theory of Hybrid Dynamical Systems

Author: Alexey S. Matveev

Publisher: Springer Science & Business Media

Published: 2000-03-23

Total Pages: 362

ISBN-13: 0817641416

DOWNLOAD EBOOK

The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


An Introduction to Hybrid Dynamical Systems

An Introduction to Hybrid Dynamical Systems

Author: Arjan J. van der Schaft

Publisher: Springer

Published: 2007-10-03

Total Pages: 189

ISBN-13: 1846285429

DOWNLOAD EBOOK

This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.


Geometric Theory of Dynamical Systems

Geometric Theory of Dynamical Systems

Author: J. Jr. Palis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 208

ISBN-13: 1461257034

DOWNLOAD EBOOK

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.


Dynamical Systems in Social Psychology

Dynamical Systems in Social Psychology

Author: Robin R. Vallacher

Publisher: Academic Press

Published: 1994-01-11

Total Pages: 338

ISBN-13:

DOWNLOAD EBOOK

A dynamical system refers to a set of elements that interact in complex, often nonlinear ways to form coherent patterns. Because of the complexity of these interactions, the system as a whole may evolve over time in seemingly unpredictable ways as new patterns of behavior emerge. This metatheory has proven useful in understanding diverse phenomena in meteorology, population biology, statistical mechanics, economics, and cosmology. The book demonstrates how the dynamical systems perspective can be applied to theory construction and research in social psychology, and in doing so, provides fresh insight into such complex phenomena as interpersonal behavior, social relations, attitudes, and social cognition.