Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Author: Hiroyoshi Mitake

Publisher: Springer

Published: 2017-06-14

Total Pages: 233

ISBN-13: 3319542087

DOWNLOAD EBOOK

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.


Analysis of Monge–Ampère Equations

Analysis of Monge–Ampère Equations

Author: Nam Q. Le

Publisher: American Mathematical Society

Published: 2024-03-07

Total Pages: 599

ISBN-13: 1470474204

DOWNLOAD EBOOK

This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes many important recent advances, including Savin's boundary localization theorem, spectral theory, and interior and boundary regularity in Sobolev and Hölder spaces with optimal assumptions. It highlights geometric aspects of the theory and connections with adjacent research areas. This self-contained book provides the necessary background and techniques in convex geometry, real analysis, and partial differential equations, presents detailed proofs of all theorems, explains subtle constructions, and includes well over a hundred exercises. It can serve as an accessible text for graduate students as well as researchers interested in this subject.


Hamilton–Jacobi Equations: Theory and Applications

Hamilton–Jacobi Equations: Theory and Applications

Author: Hung V. Tran

Publisher: American Mathematical Soc.

Published: 2021-08-16

Total Pages: 322

ISBN-13: 1470465116

DOWNLOAD EBOOK

This book gives an extensive survey of many important topics in the theory of Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton–Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry–Mather theory, and weak Kolmogorov–Arnold–Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.


Hamiltonian Dynamics

Hamiltonian Dynamics

Author: Gaetano Vilasi

Publisher: World Scientific

Published: 2001

Total Pages: 457

ISBN-13: 9810233086

DOWNLOAD EBOOK

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.


Generalized Solutions of Hamilton-Jacobi Equations

Generalized Solutions of Hamilton-Jacobi Equations

Author: Pierre-Louis Lions

Publisher: Pitman Publishing

Published: 1982

Total Pages: 332

ISBN-13:

DOWNLOAD EBOOK

This volume contains a complete and self-contained treatment of Hamilton-Jacobi equations. The author gives a new presentation of classical methods and of the relations between Hamilton-Jacobi equations and other fields. This complete treatment of both classical and recent aspects of the subject is presented in such a way that it requires only elementary notions of analysis and partial differential equations.


Hamilton-Jacobi Equations in Hilbert Spaces

Hamilton-Jacobi Equations in Hilbert Spaces

Author: Viorel Barbu

Publisher: Pitman Advanced Publishing Program

Published: 1983

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

This presents a self-contained treatment of Hamilton-Jacobi equations in Hilbert spaces. Most of the results presented have been obtained by the authors. The treatment is novel in that it is concerned with infinite dimensional Hamilton-Jacobi equations; it therefore does not overlap with Research Note #69. Indeed, these books are in a sense complementary.


Handbook of Mathematics for Engineers and Scientists

Handbook of Mathematics for Engineers and Scientists

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2006-11-27

Total Pages: 1542

ISBN-13: 1420010514

DOWNLOAD EBOOK

Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.


Pluripotential Theory

Pluripotential Theory

Author: Giorgio Patrizio

Publisher: Springer

Published: 2013-05-16

Total Pages: 328

ISBN-13: 3642364217

DOWNLOAD EBOOK

Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampére equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.


Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Author: Yves Achdou

Publisher: Springer

Published: 2013-06-03

Total Pages: 0

ISBN-13: 9783642364327

DOWNLOAD EBOOK

These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).