Dynamic Programming

Dynamic Programming

Author: Eric V. Denardo

Publisher: Courier Corporation

Published: 2012-12-27

Total Pages: 240

ISBN-13: 0486150852

DOWNLOAD EBOOK

Designed both for those who seek an acquaintance with dynamic programming and for those wishing to become experts, this text is accessible to anyone who's taken a course in operations research. It starts with a basic introduction to sequential decision processes and proceeds to the use of dynamic programming in studying models of resource allocation. Subsequent topics include methods for approximating solutions of control problems in continuous time, production control, decision-making in the face of an uncertain future, and inventory control models. The final chapter introduces sequential decision processes that lack fixed planning horizons, and the supplementary chapters treat data structures and the basic properties of convex functions. 1982 edition. Preface to the Dover Edition.


Dynamic Programming

Dynamic Programming

Author: John O.S. Kennedy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 343

ISBN-13: 9400941919

DOWNLOAD EBOOK

Humans interact with and are part of the mysterious processes of nature. Inevitably they have to discover how to manage the environment for their long-term survival and benefit. To do this successfully means learning something about the dynamics of natural processes, and then using the knowledge to work with the forces of nature for some desired outcome. These are intriguing and challenging tasks. This book describes a technique which has much to offer in attempting to achieve the latter task. A knowledge of dynamic programming is useful for anyone interested in the optimal management of agricultural and natural resources for two reasons. First, resource management problems are often problems of dynamic optimization. The dynamic programming approach offers insights into the economics of dynamic optimization which can be explained much more simply than can other approaches. Conditions for the optimal management of a resource can be derived using the logic of dynamic programming, taking as a starting point the usual economic definition of the value of a resource which is optimally managed through time. This is set out in Chapter I for a general resource problem with the minimum of mathematics. The results are related to the discrete maximum principle of control theory. In subsequent chapters dynamic programming arguments are used to derive optimality conditions for particular resources.


Dynamic Programming and Its Applications

Dynamic Programming and Its Applications

Author: Martin L. Puterman

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 427

ISBN-13: 1483258947

DOWNLOAD EBOOK

Dynamic Programming and Its Applications provides information pertinent to the theory and application of dynamic programming. This book presents the development and future directions for dynamic programming. Organized into four parts encompassing 23 chapters, this book begins with an overview of recurrence conditions for countable state Markov decision problems, which ensure that the optimal average reward exists and satisfies the functional equation of dynamic programming. This text then provides an extensive analysis of the theory of successive approximation for Markov decision problems. Other chapters consider the computational methods for deterministic, finite horizon problems, and present a unified and insightful presentation of several foundational questions. This book discusses as well the relationship between policy iteration and Newton's method. The final chapter deals with the main factors severely limiting the application of dynamic programming in practice. This book is a valuable resource for growth theorists, economists, biologists, mathematicians, and applied management scientists.


Approximate Dynamic Programming

Approximate Dynamic Programming

Author: Warren B. Powell

Publisher: John Wiley & Sons

Published: 2007-10-05

Total Pages: 487

ISBN-13: 0470182954

DOWNLOAD EBOOK

A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.


Dynamic Programming

Dynamic Programming

Author: Moshe Sniedovich

Publisher: CRC Press

Published: 2010-09-10

Total Pages: 624

ISBN-13: 9781420014631

DOWNLOAD EBOOK

Incorporating a number of the author’s recent ideas and examples, Dynamic Programming: Foundations and Principles, Second Edition presents a comprehensive and rigorous treatment of dynamic programming. The author emphasizes the crucial role that modeling plays in understanding this area. He also shows how Dijkstra’s algorithm is an excellent example of a dynamic programming algorithm, despite the impression given by the computer science literature. New to the Second Edition Expanded discussions of sequential decision models and the role of the state variable in modeling A new chapter on forward dynamic programming models A new chapter on the Push method that gives a dynamic programming perspective on Dijkstra’s algorithm for the shortest path problem A new appendix on the Corridor method Taking into account recent developments in dynamic programming, this edition continues to provide a systematic, formal outline of Bellman’s approach to dynamic programming. It looks at dynamic programming as a problem-solving methodology, identifying its constituent components and explaining its theoretical basis for tackling problems.


Reinforcement Learning and Dynamic Programming Using Function Approximators

Reinforcement Learning and Dynamic Programming Using Function Approximators

Author: Lucian Busoniu

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 280

ISBN-13: 1439821097

DOWNLOAD EBOOK

From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.


Dynamic Programming and Its Application to Optimal Control

Dynamic Programming and Its Application to Optimal Control

Author:

Publisher: Elsevier

Published: 1971-10-11

Total Pages: 271

ISBN-13: 0080955894

DOWNLOAD EBOOK

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering


Applied Dynamic Programming for Optimization of Dynamical Systems

Applied Dynamic Programming for Optimization of Dynamical Systems

Author: Rush D. Robinett III

Publisher: SIAM

Published: 2005-01-01

Total Pages: 278

ISBN-13: 9780898718676

DOWNLOAD EBOOK

Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.


Adaptive Dynamic Programming: Single and Multiple Controllers

Adaptive Dynamic Programming: Single and Multiple Controllers

Author: Ruizhuo Song

Publisher: Springer

Published: 2018-12-28

Total Pages: 278

ISBN-13: 9811317127

DOWNLOAD EBOOK

This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.


Adaptive Dynamic Programming with Applications in Optimal Control

Adaptive Dynamic Programming with Applications in Optimal Control

Author: Derong Liu

Publisher: Springer

Published: 2017-01-12

Total Pages: 0

ISBN-13: 9783319508139

DOWNLOAD EBOOK

This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.