Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges

Author: Ali Emrouznejad

Publisher: Springer

Published: 2016-05-26

Total Pages: 492

ISBN-13: 3319302655

DOWNLOAD EBOOK

The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.


Optimization and Control for Systems in the Big-Data Era

Optimization and Control for Systems in the Big-Data Era

Author: Tsan-Ming Choi

Publisher: Springer

Published: 2017-05-04

Total Pages: 281

ISBN-13: 3319535188

DOWNLOAD EBOOK

This book focuses on optimal control and systems engineering in the big data era. It examines the scientific innovations in optimization, control and resilience management that can be applied to further success. In both business operations and engineering applications, there are huge amounts of data that can overwhelm computing resources of large-scale systems. This “big data” provides new opportunities to improve decision making and addresses risk for individuals as well in organizations. While utilizing data smartly can enhance decision making, how to use and incorporate data into the decision making framework remains a challenging topic. Ultimately the chapters in this book present new models and frameworks to help overcome this obstacle. Optimization and Control for Systems in the Big-Data Era: Theory and Applications is divided into five parts. Part I offers reviews on optimization and control theories, and Part II examines the optimization and control applications. Part III provides novel insights and new findings in the area of financial optimization analysis. The chapters in Part IV deal with operations analysis, covering flow-shop operations and quick response systems. The book concludes with final remarks and a look to the future of big data related optimization and control problems.


Encyclopedia of Business Analytics and Optimization

Encyclopedia of Business Analytics and Optimization

Author: Wang, John

Publisher: IGI Global

Published: 2014-02-28

Total Pages: 2862

ISBN-13: 1466652039

DOWNLOAD EBOOK

As the age of Big Data emerges, it becomes necessary to take the five dimensions of Big Data- volume, variety, velocity, volatility, and veracity- and focus these dimensions towards one critical emphasis - value. The Encyclopedia of Business Analytics and Optimization confronts the challenges of information retrieval in the age of Big Data by exploring recent advances in the areas of knowledge management, data visualization, interdisciplinary communication, and others. Through its critical approach and practical application, this book will be a must-have reference for any professional, leader, analyst, or manager interested in making the most of the knowledge resources at their disposal.


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems

Author: Frederica Darema

Publisher: Springer Nature

Published: 2023-10-16

Total Pages: 937

ISBN-13: 3031279867

DOWNLOAD EBOOK

This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems

Author: Erik P. Blasch

Publisher: Springer Nature

Published: 2022-05-11

Total Pages: 753

ISBN-13: 3030745686

DOWNLOAD EBOOK

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination. The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms. Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions. In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide. Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential. Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University


Proceedings of the 2022 International Conference on Business and Policy Studies

Proceedings of the 2022 International Conference on Business and Policy Studies

Author: Xiaolong Li

Publisher: Springer Nature

Published: 2022-09-26

Total Pages: 978

ISBN-13: 9811957274

DOWNLOAD EBOOK

This proceedings volume contains papers accepted by the 2022 International Conference on Business and Policy Studies (CONF-BPS 2022), which are carefully selected and reviewed by professional reviewers from corresponding research fields and the editorial team of the conference. This volume presents latest research achievements, inspirations, and applications in applied economy, finance, enterprise management, public administration, and policy studies. CONF-BPS hopes this volume could be inspiring and of academic value.Business and policy studies both are heated research topics and are related to multiple fields. Held by Eliwise Academy, CONF-BPS aims at bringing together intellectuals from related fields including applied economy, finance, and public administration for academic exchange. Its goal is to serve as an international platform for researchers to present latest research progress, share ideas and inspirations, and exchange experience. Through more academic communication and exchange, this conference hops to promote international corporation and joint initiatives in relevant fields. This volume will be of interest to researchers, academics, professionals, and policy makers in the field of business, economics, management, and policy studies.


Machine Learning, Optimization, and Big Data

Machine Learning, Optimization, and Big Data

Author: Panos M. Pardalos

Publisher: Springer

Published: 2016-12-24

Total Pages: 475

ISBN-13: 3319514695

DOWNLOAD EBOOK

This book constitutes revised selected papers from the Second International Workshop on Machine Learning, Optimization, and Big Data, MOD 2016, held in Volterra, Italy, in August 2016. The 40 papers presented in this volume were carefully reviewed and selected from 97 submissions. These proceedings contain papers in the fields of Machine Learning, Computational Optimization and DataScience presenting a substantial array of ideas, technologies, algorithms, methods and applications.


Machine Learning, Optimization, and Big Data

Machine Learning, Optimization, and Big Data

Author: Giuseppe Nicosia

Publisher: Springer

Published: 2017-12-19

Total Pages: 621

ISBN-13: 3319729268

DOWNLOAD EBOOK

This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.


Mastering Big Data

Mastering Big Data

Author: Cybellium Ltd

Publisher: Cybellium Ltd

Published: 2023-09-06

Total Pages: 205

ISBN-13:

DOWNLOAD EBOOK

Cybellium Ltd is dedicated to empowering individuals and organizations with the knowledge and skills they need to navigate the ever-evolving computer science landscape securely and learn only the latest information available on any subject in the category of computer science including: - Information Technology (IT) - Cyber Security - Information Security - Big Data - Artificial Intelligence (AI) - Engineering - Robotics - Standards and compliance Our mission is to be at the forefront of computer science education, offering a wide and comprehensive range of resources, including books, courses, classes and training programs, tailored to meet the diverse needs of any subject in computer science. Visit https://www.cybellium.com for more books.


Advancing Cloud Database Systems and Capacity Planning With Dynamic Applications

Advancing Cloud Database Systems and Capacity Planning With Dynamic Applications

Author: Kamila, Narendra Kumar

Publisher: IGI Global

Published: 2017-01-05

Total Pages: 453

ISBN-13: 1522520147

DOWNLOAD EBOOK

Continuous improvements in data analysis and cloud computing have allowed more opportunities to develop systems with user-focused designs. This not only leads to higher success in day-to-day usage, but it increases the overall probability of technology adoption. Advancing Cloud Database Systems and Capacity Planning With Dynamic Applications is a key resource on the latest innovations in cloud database systems and their impact on the daily lives of people in modern society. Highlighting multidisciplinary studies on information storage and retrieval, big data architectures, and artificial intelligence, this publication is an ideal reference source for academicians, researchers, scientists, advanced level students, technology developers and IT officials.