Enzyme Kinetics
Author: Irwin H. Segel
Publisher:
Published: 2014
Total Pages: 957
ISBN-13: 9788126548156
DOWNLOAD EBOOKRead and Download eBook Full
Author: Irwin H. Segel
Publisher:
Published: 2014
Total Pages: 957
ISBN-13: 9788126548156
DOWNLOAD EBOOKAuthor: Erik Mosekilde
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 300
ISBN-13: 3642792901
DOWNLOAD EBOOKThe development of a proper description of the living world today stands as one of the most significant challenges to physics. A variety of new experimental techniques in molecular biology, microbiol ogy, physiology and other fields of biological research constantly expand our knowledge and enable us to make increasingly more detailed functional and structural descriptions. Over the past decades, the amount and complexity of available information have multiplied dramatically, while at the same time our basic understanding of the nature of regulation, behavior, morphogenesis and evolution in the living world has made only modest progress. A key obstacle is clearly the proper handling of the available data. This requires a stronger emphasis on mathematical modeling through which the consistency of the adopted explanations can be checked, and general princi ples may be extracted. As an even more serious problem, however, it appears that the proper physical concepts for the development of a theoretically oriented biology have not hitherto been available. Classical mechanics and equilibrium thermody namics, for instance, are inappropriate and useless in some of the most essen tial biological contexts. Fortunately, there is now convincing evidence that the concepts and methods of the newly developed fields of nonlinear dynam ics and complex systems theory, combined with irreversible thermodynamics and far-from-equilibrium statistical mechanics will enable us to move ahead with many of these problems.
Author: National Library of Medicine (U.S.)
Publisher:
Published:
Total Pages: 1712
ISBN-13:
DOWNLOAD EBOOKFirst multi-year cumulation covers six years: 1965-70.
Author: Joseph DiStefano III
Publisher: Academic Press
Published: 2015-01-10
Total Pages: 886
ISBN-13: 0124104932
DOWNLOAD EBOOKDynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]
Author: Katsuya Hayashi
Publisher: Springer
Published: 1986
Total Pages: 392
ISBN-13:
DOWNLOAD EBOOKAuthor: V. Lakshmikantham
Publisher: Walter de Gruyter
Published: 2011-11-14
Total Pages: 4040
ISBN-13: 3110883236
DOWNLOAD EBOOKAuthor: John Ross
Publisher: Oxford University Press
Published: 2006
Total Pages: 239
ISBN-13: 0195178688
DOWNLOAD EBOOKIn a chemical system with many chemical species several questions can be asked: what species react with other species: in what temporal order: and with what results? These questions have been asked for over one hundred years about simple and complex chemical systems, and the answers constitute the macroscopic reaction mechanism. In Determination of Complex Reaction Mechanisms authors John Ross, Igor Schreiber, and Marcel Vlad present several systematic approaches for obtaining information on the causal connectivity of chemical species, on correlations of chemical species, on the reaction pathway, and on the reaction mechanism.Basic pulse theory is demonstrated and tested in an experiment on glycolysis. In a second approach, measurements on time series of concentrations are used to construct correlation functions and a theory is developed which shows that from these functions information may be inferred on the reaction pathway, the reaction mechanism, and the centers of control in that mechanism. A third approach is based on application of genetic algorithm methods to the study of the evolutionary development of a reaction mechanism, to the attainment given goals in a mechanism, and to the determination of a reaction mechanism and rate coefficients by comparison with experiment. Responses of non-linear systems to pulses or other perturbations are analyzed, and mechanisms of oscillatory reactions are presented in detail. The concluding chapters give an introduction to bioinformatics and statistical methods for determining reaction mechanisms.
Author: Elmar Heinzle
Publisher: John Wiley & Sons
Published: 2021-07-06
Total Pages: 62
ISBN-13: 3527325247
DOWNLOAD EBOOKThis practical book presents the modeling of dynamic biological engineering processes in a readily comprehensible manner, using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the 60 examples illustrate almost every aspect of biological engineering science, with each one described in detail, including the model equations. The programs are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It is so powerful that the model parameters may be defined as "sliders", which allow the effect of their change on the model behavior to be seen almost immediately. Data may be included for curve fitting, and sensitivity or multiple runs may be performed. The results can be viewed simultaneously on multiple-graph windows or by using overlays. The examples can be varied to fit any real situation, and the suggested exercises provide practical guidance. The extensive teaching experience of the authors is reflected in this well-balanced presentation, which is suitable for the teacher, student, biochemist or the engineer.
Author: Athel Cornish-Bowden
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 366
ISBN-13: 9401140723
DOWNLOAD EBOOKTwo decades have passed since the mechanisms of protein synthesis became well enough understood to permit the genetic modification oforganisms. An impressive amount of new knowledge has emerged from the new technology, but much ofthe promise of20years ago has notyet been fulfilled. In biotechnology, efforts to increase the yields of commercially valuable metabolites have been less successful than ex pected, and when they have succeeded it has often been as much from selective breeding as from new methods. The cell is more complicated than what is presented in the classical teaching of biochemistry, it contains more structure than was dreamed of 20 years ago, and the behaviour ofany systemofenzymes is more elaborate than can be explained in terms ofa single supposedly rate-limiting enzyme. Even if classical enzymology and meta bolism may have seemed rather unfashionable during the rise ofmolecular biology, they remain central to any modification ofthe metabolic behaviour oforganisms. As such modification is essential in much ofbiotechnology and drug development, bio technologists can only ignore these topics at their peril.
Author: A. Munack
Publisher: Elsevier
Published: 2014-05-23
Total Pages: 378
ISBN-13: 1483296903
DOWNLOAD EBOOKThe 6th Computer Applications in Biotechnology (CAB6) conference was a continuation of 2 series of events: the IFAC symposia on Modelling and Control of Biotechnical Processes and the International Conferences on Computer Applications in Fermentation Technology. This conference provided the opportunity for both sides, leading researchers and industrial practitioners, in this interdisciplinary field to exchange new ideas and technology; concepts and solutions. This postprint volume contains all those papers which were presented at the conference.