Concrete structures can be designed for durability by applying the principles and procedures of reliability theory combined with traditional structural design. This book is the first systematic attempt to introduce into structural design a general theory of structural reliability and existing calculation models for common degradation processes. It
By designing in corrosion prevention and through preventive maintenance, the overall service cost of a concrete structure can be substantially reduced. This book takes a probabilistic approach to the engineering design issues for controlling durability and service life of concrete structures in severe environments. Many durability problems are caused by poor quality control as well as special problems during concrete construction. The issue of construction quality and variability need to be grasped before durability can be successfully controlled. This book helps by giving: reviews of field performance, deteriorating processes and current codes and practice methods for calculation of corrosion probability; performance-based concrete quality control; corrosion prevention and preventive maintenance calculation of life cycle costs and life cycle assessment recommended job specifications. Internationally relevant with a practical focus, this is the essential guide for consulting and construction engineers involved in the design and execution of new concrete structures.
Comprehensive coverage of durability of concrete at both material and structural levels, with design related issues Links two active fields in materials science and structural engineering: the durability processes of concrete materials and design methods of concrete structures Facilitates communication between the two communities, helping to implement life-cycle concepts into future design methods of concrete structures Presents state-of-the-art information on the deterioration mechanism and performance evolution of structural concrete under environmental actions and the design methods for durability of concrete structures Provides efficient support and practical tools for life-cycle oriented structural design which has been widely recognized as a new generation of design philosophy for engineering structures The author has long experience working with the topic and the materials presented have been part of the author's current teaching course of Durability and Assessment of Engineering Structures for graduate students at Tsinghua University The design methods and approaches for durability of concrete structures are developed from newly finished high level research projects and have been employed as recommended provisions in design code including Chinese Code and Eurocode 2
This book provides an up-to-date survey of durability issues, with a particular focus on specification and design, and how to achieve durability in actual concrete construction. It is aimed at the practising engineer, but is also a valuable resource for graduate-level programs in universities. Along with background to current philosophies it gathers together in one useful reference a summary of current knowledge on concrete durability, includes information on modern concrete materials, and shows how these materials can be combined to produce durable concrete. The approach is consistent with the increasing focus on sustainability that is being addressed by the concrete industry, with the current emphasis on ‘design for durability’.
Marine Concrete Structures: Design, Durability and Performance comprehensively examines structures located in, under, or in close proximity to the sea. A major emphasis of the book is on the long-term performance of marine concrete structures that not only represent major infrastructure investment and provision, but are also required to operate with minimal maintenance. Chapters review the design, specification, construction, and operation of marine concrete structures, and examine their performance and durability in the marine environment. A number of case studies of significant marine concrete structures from around the world are included which help to reinforce the principles outlined in earlier chapters and provide useful background to these types of structures. The result is a thorough and up-to-date reference source that engineers, researchers, and postgraduate students in this field will find invaluable. - Covers, in detail, the design, specification, construction, and operation of marine concrete structures - Examines the properties and performance of concrete in the marine environment - Provides case studies on significant marine concrete structures and durability-based design from around the world
Written specifically for the young professional and addressing a growing need for a long service life with minimal maintenance, Concrete Durability takes a whole new look at the whole-life performance of structures. This text examines physical and chemical issues that can threaten the durability of concrete. It explores available options for achiev
Durability and service life design of concrete constructions have considerable socio-economic and environmental consequences, in which the permeability of concrete to aggressive intruders plays a vital role. Concrete Permeability and Durability Performance provides deep insight into the permeability of concrete, moving from theory to practice, and presents over 20 real cases, such as Tokyo’s Museum of Western Art, Port of Miami Tunnel and Hong Kong-Zhuhai-Macao sea-link, including field tests in the Antarctic and Atacama Desert. It stresses the importance of site testing for a realistic durability assessment and details the "Torrent Method" for non-destructive measurement of air-permeability. It also delivers answers for some vexing questions: Should the coefficient of permeability be expressed in m2 or m/s? How to get a "mean" pore radius of concrete from gas-permeability tests? Why should permeability preferably be measured on site? How can service life of reinforced concrete structures be predicted by site testing of gas-permeability and cover thickness? Practitioners will find stimulating examples on how to predict the coming service life of new structures and the remaining life of existing structures, based on site testing of air-permeability and cover thickness. Researchers will value theoretical principles, testing methods, as well as how test results reflect the influence of concrete mix composition and processing.
This volume gathers the proceedings of the 3rd International RILEM Workshop on Concrete Durability and Service Life Planning (ConcreteLife’20), held in Haifa, Israel in January 2020. The papers cover a range of topics in concrete curing, cracking in concrete structures, corrosion of steel in concrete, thermal and hygral effects, concrete in cold climates and under high temperatures, recycling, alkali-silica reactions, chloride and sulfate attacks, marine structures, transport phenomena, durability design, microstructure of concrete and volume changes, and life cycle assessment. The book also explores future trends in research, development, and practical engineering applications related to durable concrete construction, and focuses on the design and construction of concrete structures exposed to various environmental conditions and mechanical loading. Given its scope, it offers a valuable asset for all researchers and graduate students in the areas of cement chemistry, cement production, and concrete design.
Serious degradation mechanisms can severely reduce the service life of concrete structures: steel reinforcement can corrode, cement matrix can be attacked, and even aggregates can show detrimental processes. Therefore, it is important to understand how damage can occur to concrete structures and to appreciate the timing of the actions leading to damage. Damage to Concrete Structures summarizes the state-of-the-art information on the degradation of concrete structures, and gives a clear and comprehensive overview of what can go wrong. Offering a logical flow, the chapters are ordered according to the chronological timing of the actions leading to concrete damage. The author explains the different actions or mechanisms in a fundamental manner, without too many physical or chemical details, to provide greater clarity and readability. The book describes the different causes of damage to concrete, including inappropriate design, errors during execution, mechanisms occurring during hardening of concrete, and actions or degradation mechanisms during service life (hardened concrete). The degradation mechanisms are illustrated with numerous real-world examples and many drawings and photographs taken of actual structures. Written as a textbook for students as well as a reference for professionals, this easy-to-comprehend book gives readers a deeper understanding of the damage that can occur to concrete during the construction process and service.
The two themes of integration of structural and durability design, and integration of concrete technologies in relation to global environmental issues are drawn together in this book. It presents the views of distinguished international researchers and engineers on these key topics as the 21st century approaches. Derived from a workshop on rational design of concrete structures held in Hakodate, Japan, in August 1995, the book provides a focus for debate about the ways in which concrete technologies around the world must respond to the necessity of ensuring that concrete construction achieves higher levels of durability, and about the growing imperative to meet higher environmental standards in concrete production and use.