Although the programming and use of a Digital Signal Processor (DSP) may not be the most complex process, utilizing DSPs in applications such as motor control can be extremely challenging for the first-time user. DSP-Based Electromechanical Motion Control provides a general application guide for students and engineers who want to implement DSP-base
DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of authors Fang Lin Luo and Hong Ye, DC/DC converters have now been sorted into their six generations, and by a rough count, over 800 different topologies currently exist, with more being developed each year. Advanced DC/DC Converters, Second Edition offers a concise, practical presentation of DC/DC converters, summarizes the spectrum of conversion technologies, and presents new ideas and more than 200 new topologies. Beginning with background material on DC/DC conversion, the book later discusses both voltage lift and super-lift converters. It then proceeds through each generation, including the groundbreaking sixth generation—converters developed by the authors that can be cascaded for high voltage transfer gain. This new edition updates every chapter and offers three new chapters. The introduction of the super-lift technique is an outstanding achievement in DC/DC conversion technology, and the ultra-lift technique and hybrid split-capacitor/inductor applied in Super-Lift Luo-Converters are introduced in Chapters 7 and 8. In Chapter 9, the authors have theoretically defined a new concept, Energy Factor (EF), researched the relations between EF and the mathematical modelling for power DC/DC converters, and demonstrated the modeling method for two converters. More than 320 figures, 60 tables, and 500 formulae allow the reader to more easily grasp the overall structure of advanced DC/DC converters, provide fast access to precise data, and help them to quickly determine the values of their own circuit components.
Power electronics can be a difficult course for students to understand and for professional professors to teach, simplifying the process for both. LTspice for power electronics and electrical power edition illustrates methods of integrating industry-standard LTspice software for design verification and as a theoretical laboratory bench. Helpful LTspice software and Program Files Available for Download Based on the author Muhammad H. Rashid’s considerable experience merging design content and SPICE into a power electronics course, this vastly improved and updated edition focuses on helping readers integrate the LTspice simulator with a minimum amount of time and effort. Giving users a better understanding of the operation of a power electronic circuit, the author explores the transient behavior of current and voltage waveforms for every circuit element at every stage. The book also includes examples of common types of power converters as well as circuits with linear and nonlinear inductors. New in this edition: Changes to run on OrCAD SPICE, or LTspice IV or higher Students’ learning outcomes (SLOs) listed at the start of each chapter Abstracts of chapters List the input side and output side performance parameters of the converters The characteristics of power semiconductors—diodes, BJTs, MOSFETs, and IGBTs Generating PWM and sinusoidal PWM gating signals Evaluating the power efficiency of converters Monte Carlo analysis of converters Worst-case analysis of converters Nonlinear transformer model Evaluate user-defined electrical quantities (.MEASURE) This book demonstrates techniques for executing power conversion and ensuring the quality of output waveform rather than the accurate modeling of power semiconductor devices. This approach benefits students, enabling them to compare classroom results obtained with simple switch models of devices.
Electricity and Electronics for Renewable Energy Technology: An Introduction provides a foundational understanding of electricity and the methods and devices specific to electricity from renewable sources. The book begins with a brief explanation of the necessary mathematics and then: Addresses the basics of electricity and relationships, motors and generators, transformers, and networks and distribution Tackles the key concepts associated with electronics, diodes and transistors, switching devices, and power converters Covers digital electronics from number systems and logic circuits to encoders and decoders Explores advanced subjects such as reactive power and the operation of a transistor A lab manual and PowerPoint presentation are available with qualifying course adoption. Featuring extensive review questions and practice problems at the end of each chapter, Electricity and Electronics for Renewable Energy Technology: An Introduction instills an essential knowledge of electricity and electronics required for work with renewable energy.
Power Electronics is a large size technology, mainly covering four categories: the AC/DC rectifiers, DC/DC converters, DC/AC inverters, and AC/AC converters. This book offers approximately 100 novel topologies of all four. The applications are used in sustainable energy generation areas, such as distributed generation (DG), micro-grid (MG), smart grid (SG) systems, and electrical vehicles (EV). With case studies from GE, AEG, Simplatroll Ltd, and Chinese Power Manufacturing Co., the reader will be exposed to practical applications in industry and real-world settings. This new edition features an entirely new chapter on best switching angles to obtain lowest THD for multilevel DC/AC inverters. Additionally, all chapters have been updated and include homework problems throughout.
From the fan motor in your PC to precision control of aircraft, electrical machines of all sizes, varieties, and levels of complexity permeate our world. Some are very simple, while others require exacting and application-specific design. Electrical Machine Analysis Using Finite Elements provides the tools necessary for the analysis and design of any type of electrical machine by integrating mathematical/numerical techniques with analytical and design methodologies. Building successively from simple to complex analyses, this book leads you step-by-step through the procedures and illustrates their implementation with examples of both traditional and innovative machines. Although the examples are of specific devices, they demonstrate how the procedures apply to any type of electrical machine, introducing a preliminary theory followed by various considerations for the unique circumstance. The author presents the mathematical background underlying the analysis, but emphasizes application of the techniques, common strategies, and obtained results. He also supplies codes for simple algorithms and reveals analytical methodologies that universally apply to any software program. With step-by-step coverage of the fundamentals and common procedures, Electrical Machine Analysis Using Finite Elements offers a superior analytical framework that allows you to adapt to any electrical machine, to any software platform, and to any specific requirements that you may encounter.
The search for renewable energy and smart grids, the societal impact of blackouts, and the environmental impact of generating electricity, along with the new ABET criteria, continue to drive a renewed interest in electric energy as a core subject. Keeping pace with these changes, Electric Energy: An Introduction, Third Edition restructures the traditional introductory electric energy course to better meet the needs of electrical and mechanical engineering students. Now in color, this third edition of a bestselling textbook gives students a wider view of electric energy, without sacrificing depth. Coverage includes energy resources, renewable energy, power plants and their environmental impacts, electric safety, power quality, power market, blackouts, and future power systems. The book also makes the traditional topics of electromechanical conversion, transformers, power electronics, and three-phase systems more relevant to students. Throughout, it emphasizes issues that engineers encounter in their daily work, with numerous examples drawn from real systems and real data. What’s New in This Edition Color illustrations Substation and distribution equipment Updated data on energy resources Expanded coverage of power plants Expanded material on renewable energy Expanded material on electric safety Three-phase system and pulse width modulation for DC/AC converters Induction generator More information on smart grids Additional problems and solutions Combining the fundamentals of traditional energy conversion with contemporary topics in electric energy, this accessible textbook gives students the broad background they need to meet future challenges.
Air quality is deteriorating, the globe is warming, and petroleum resources are decreasing. The most promising solutions for the future involve the development of effective and efficient drive train technologies. This comprehensive volume meets this challenge and opportunity by integrating the wealth of disparate information found in scattered pape
Now in its Third Edition, Alternative Energy Systems: Design and Analysis with Induction Generators has been renamed Modeling and Analysis with Induction Generators to convey the book's primary objective-to present the fundamentals of and latest advances in the modeling and analysis of induction generators. New to the Third EditionRevised equations
New perspectives on using induction generators in alternative energy technologies Durable and cost-effective, induction power generators have undergone numerous improvements that make them an increasingly attractive option for renewable energy applications, particularly for wind and hydropower generation systems. From fundamental concepts to the latest technologies, Alternative Energy Systems: Design and Analysis with Induction Generators, Second Edition provides detailed and accurate coverage of all aspects related to the design, operation, and overall analysis of such systems. Placing a greater emphasis on providing clear, precise, and succinct explanations, this second edition features new, revised, and updated content as well as figures, tables, equations, and examples. Each chapter introduces a multi-step, chapter-length problem relating the material to a real application. The solution appears at the end of the chapter, along with additional practice problems and references. New Material in This Edition: Updated definitions for generated power and efficiency Technological advances, such as new applications using doubly-fed induction generators New methodologies, such as the magnetization curve representation for induction generators Additional focus on renewable energy applications such as sea, wind, and hydropower systems Totally re-written and updated chapter covering doubly-fed induction generators Alternative Energy Systems provides the tools and expertise for advanced students and professionals in electrical, mechanical, civil, and environmental engineering involved in the development of power plants. ";