Drying Shrinkage Response of a Model of Concrete
Author: Selcuk Sancar
Publisher:
Published: 1974
Total Pages: 498
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Selcuk Sancar
Publisher:
Published: 1974
Total Pages: 498
ISBN-13:
DOWNLOAD EBOOKAuthor: Zdeněk P. Bažant
Publisher: Springer
Published: 2018-01-17
Total Pages: 960
ISBN-13: 9402411380
DOWNLOAD EBOOKThis comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.
Author: Z. P. Bažant
Publisher: Spon Press
Published: 1993-01-01
Total Pages: 934
ISBN-13: 9780419186304
DOWNLOAD EBOOKPresents the proceedings of the 5th RILEM International Symposium, held in Barcelona in September 1993. The papers discuss creep and shrinkage of concrete, and should be of interest to cement and concrete technologists and researchers, as well as structural engineers.
Author: F. Pacheco-Torgal
Publisher: Elsevier
Published: 2024-04-25
Total Pages: 428
ISBN-13: 0443135789
DOWNLOAD EBOOKCarbon Dioxide Sequestration in Cementitious Construction Materials – Second Edition follows on the success of the previous edition and provides an up-to-date review on recent research developments on cementitious construction materials based on carbon dioxide storage. Along with the addition of an entire new section on bio- sequestration. Brand new chapters are included on carbonation methods such as carbon sequestration of cement pastes during pressurized CO2 curing; carbon dioxide sequestration of low-calcium fly ash via direct aqueous carbonation; increasing the efficiency of carbon dioxide sequestration through high temperature carbonation; and carbon sequestration in engineered cementitious composites. There are also several new case studies on sequestration of industrial wastes, which include carbon dioxide sequestration by direct mineralization of fly ash; the effect of direct carbonation routes of basic oxygen furnace slag on strength and hydration of blended cement paste; carbon sequestration of mine waste and utilization as a supplementary cementitious material and carbon dioxide sequestration on masonry blocks based on industrial wastes. This updated edition will be a valuable reference resource for academic researchers, materials scientists and civil engineers, and other construction professionals looking for viable routes for carbon sequestration in building materials. - Promotes the importance of CO2 storage in carbonation of construction materials, especially reincorporation of CO2 during fabrication - Discusses a wide range of cementitious materials with CO2 storage capabilities - Features redesign of cementation mechanisms to utilize CO2 during fabrication - Includes a new section on bio-sequestration
Author: Cuong Ha-Minh
Publisher: Springer Nature
Published: 2021-10-28
Total Pages: 1861
ISBN-13: 9811671605
DOWNLOAD EBOOKThis book highlights the key role of green infrastructure (GI) in providing natural and ecosystem solutions, helping alleviate many of the environmental, social, and economic problems caused by rapid urbanization. The book gathers the emerging technologies and applications in various disciplines involving geotechnics, civil engineering, and structures, which are presented in numerous high-quality papers by worldwide researchers, practitioners, policymakers, and entrepreneurs at the 6th CIGOS event, 2021. Moreover, by sharing knowledge and experiences around emerging GI technologies and policy issues, the book aims at encouraging adoption of GI technologies as well as building capacity for implementing GI practices at all scales. This book is useful for researchers and professionals in designing, building, and managing sustainable buildings and infrastructure.
Author: Herbert Pöllmann
Publisher: Walter de Gruyter GmbH & Co KG
Published: 2017-12-18
Total Pages: 518
ISBN-13: 3110473720
DOWNLOAD EBOOKAside from water the materials which are used by mankind in highest quantities arecementitious materials and concrete. This book shows how the quality of the technical product depends on mineral phases and their reactions during the hydration and strengthening process. Additives and admixtures infl uence the course of hydration and the properties. Options of reducing the CO2-production in cementitious materials are presented and numerous examples of unhydrous and hydrous phases and their formation conditions are discussed. This editorial work consists of four parts including cement composition and hydration, Special cement and binder mineral phases, Cementitious and binder materials, and Measurement and properties. Every part contains different contributions and covers a broad range within the area. Contents Part I: Cement composition and hydration Diffraction and crystallography applied to anhydrous cements Diffraction and crystallography applied to hydrating cements Synthesis of highly reactive pure cement phases Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements Part II: Special cement and binder mineral phases Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts Crystallography and crystal chemistry of AFm phases related to cement chemistry Part III: Cementitious and binder materials Chemistry, design and application of hybrid alkali activated binders Binding materials based on calcium sulphates Magnesia building material (Sorel cement) – from basics to application New CO2-reduced cementitious systems Composition and properties of ternary binders Part IV: Measurement and properties Characterization of microstructural properties of Portland cements by analytical scanning electron microscopy Correlating XRD data with technological properties No cement production without refractories
Author:
Publisher:
Published: 2008-01-01
Total Pages: 44
ISBN-13: 9780870312786
DOWNLOAD EBOOKAuthor: Tada-aki Tanabe
Publisher: CRC Press
Published: 2008-09-01
Total Pages: 1540
ISBN-13: 0203882954
DOWNLOAD EBOOKCREEP, SHRINKAGE AND DURABILITY MECHANICS OF CONCRETE AND CONCRETE STRUCTURES contains the keynote lectures, technical reports and contributed papers presented at the Eighth International Conference on Creep, Shrinkage and Durability of Concrete and Concrete Structures (CONCREEP8, Ise-shima, Japan, 30 September - 2 October 2008). The topics covered
Author: Z. P. Bažant
Publisher: John Wiley & Sons
Published: 1982
Total Pages: 384
ISBN-13:
DOWNLOAD EBOOKAuthor: Erika E. Holt
Publisher:
Published: 2001
Total Pages: 200
ISBN-13:
DOWNLOAD EBOOK