Doing Statistical Mediation and Moderation

Doing Statistical Mediation and Moderation

Author: Paul E. Jose

Publisher: Guilford Press

Published: 2013-02-25

Total Pages: 354

ISBN-13: 1462508235

DOWNLOAD EBOOK

Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; "Helpful Suggestions" about procedures and pitfalls; "Knowledge Boxes" delving into special topics, such as dummy coding; and end-of-chapter exercises and problems (with answers). The companion website (www.guilford.com/jose-materials) provides downloadable data and syntax files for the book's examples and exercises, as well as links to Jose's online programs, MedGraph and ModGraph. Appendices present SPSS, Amos, and Mplus syntax for conducting the key types of analyses.


Doing Statistical Mediation and Moderation

Doing Statistical Mediation and Moderation

Author: Paul E. Jose

Publisher: Guilford Press

Published: 2013-03-29

Total Pages: 353

ISBN-13: 1462508154

DOWNLOAD EBOOK

"Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; "Helpful Suggestions" about procedures and pitfalls; "Knowledge Boxes" delving into special topics, such as dummy coding; and end-of-chapter exercises and problems (with answers). The companion website provides downloadable sample data sets that are used in the book to demonstrate particular analytic strategies, and explains how researchers and students can execute analyses using Jose's online programs, MedGraph and ModGraph. Appendices present SPSS, AMOS, and Mplus syntax for conducting the key types of analyses"--


Introduction to Statistical Mediation Analysis

Introduction to Statistical Mediation Analysis

Author: David MacKinnon

Publisher: Routledge

Published: 2012-10-02

Total Pages: 479

ISBN-13: 1136676139

DOWNLOAD EBOOK

This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.


Causality in a Social World

Causality in a Social World

Author: Guanglei Hong

Publisher: John Wiley & Sons

Published: 2015-06-09

Total Pages: 443

ISBN-13: 1119030609

DOWNLOAD EBOOK

Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in the context of each application, the author demonstrates that improved statistical procedures will greatly enhance the empirical study of causal relationship theory. Applications focus on interventions designed to improve outcomes for participants who are embedded in social settings, including families, classrooms, schools, neighbourhoods, and workplaces.


Mediation Analysis

Mediation Analysis

Author: Dawn Iacobucci

Publisher: SAGE

Published: 2008-04

Total Pages: 105

ISBN-13: 141292569X

DOWNLOAD EBOOK

Explores even the fundamental assumptions underlying mediation analysis


Handbook of Quantitative Methods for Educational Research

Handbook of Quantitative Methods for Educational Research

Author: Timothy Teo

Publisher: Springer Science & Business Media

Published: 2014-02-07

Total Pages: 404

ISBN-13: 9462094047

DOWNLOAD EBOOK

As part of their research activities, researchers in all areas of education develop measuring instruments, design and conduct experiments and surveys, and analyze data resulting from these activities. Educational research has a strong tradition of employing state-of-the-art statistical and psychometric (psychological measurement) techniques. Commonly referred to as quantitative methods, these techniques cover a range of statistical tests and tools. Quantitative research is essentially about collecting numerical data to explain a particular phenomenon of interest. Over the years, many methods and models have been developed to address the increasingly complex issues that educational researchers seek to address. This handbook serves to act as a reference for educational researchers and practitioners who desire to acquire knowledge and skills in quantitative methods for data analysis or to obtain deeper insights from published works. Written by experienced researchers and educators, each chapter in this handbook covers a methodological topic with attention paid to the theory, procedures, and the challenges on the use of that particular methodology. It is hoped that readers will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area.


Regression Analysis and Linear Models

Regression Analysis and Linear Models

Author: Richard B. Darlington

Publisher: Guilford Publications

Published: 2016-08-22

Total Pages: 689

ISBN-13: 1462527981

DOWNLOAD EBOOK

Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.