The best-selling Distributed Sensor Networks became the definitive guide to understanding this far-reaching technology. Preserving the excellence and accessibility of its predecessor, Distributed Sensor Networks, Second Edition once again provides all the fundamentals and applications in one complete, self-contained source. Ideal as a tutorial for
Proceedings of the International Conference on Cybernetics and Informatics (ICCI 2012) covers the hybridization in control, computer, information, communications and applications. ICCI 2012 held on September 21-23, 2012, in Chongqing, China, is organized by Chongqing Normal University, Chongqing University, Nanyang Technological University, Shanghai Jiao Tong University, Hunan Institute of Engineering, Beijing University, and sponsored by National Natural Science Foundation of China (NSFC). This two volume publication includes selected papers from the ICCI 2012. Covering the latest research advances in the area of computer, informatics, cybernetics and applications, which mainly includes the computer, information, control, communications technologies and applications.
This book constitutes the refereed proceedings of the Second International Workshop on Information Processing in Sensor Networks, IPSN 2003, held in Palo Alto, CA, USA, in April 2003. The 23 revised full papers and 21 revised poster papers presented were carefully reviewed and selected from 73 submissions. Among the topics addressed are wireless sensor networks, query processing, decentralized sensor platforms, distributed databases, distributed group management, sensor network design, collaborative signal processing, adhoc sensor networks, distributed algorithms, distributed sensor network control, sensor network resource management, data service middleware, random sensor networks, mobile agents, target tracking, sensor network protocols, large scale sensor networks, and multicast.
The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.
Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.
This book provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including topics on systems design tools and techniques. Additionally, the book examines a varied range of applications. Features: contains valuable contributions from an international selection of leading experts in the field; presents a high-level introduction to the aims and motivations underpinning distributed sensing; describes decision-making algorithms in the presence of complex sensor networks; provides a detailed analysis of the design, implementation, and development of a distributed network of homogeneous or heterogeneous sensors; reviews the application of distributed sensing to human behavior understanding and autonomous intelligent vehicles; includes a helpful glossary and a list of acronyms.
Wireless sensor networks have a range of applications, including military uses and in environmental monitoring. When an area of interest is inaccessible by conventional means, such a network can be deployed in ways resulting in a random distribution of the sensors. Randomly Deployed Wireless Sensor Networks offers a probabilistic method to model and analyze these networks. The book considers the network design, coverage, target detection, localization and tracking of sensors in randomly deployed wireless networks, and proposes a stochastic model. It quantifies the relationship between parameters of the network and its performance, and puts forward a communication protocol. The title provides analyses and formulas, giving engineering insight into randomly deployed wireless sensor networks. Five chapters consider the analysis of coverage performance; working modes and scheduling mechanisms; the relationship between sensor behavior and network performance properties; probabilistic forwarding routing protocols; localization methods for multiple targets and target number estimation; and experiments on target localization and tracking with a Mica sensor system. - Details a probabilistic method to model and analyze randomly deployed wireless sensor networks - Gives working modes and scheduling mechanisms for sensor nodes, allowing high-probability of target detection - Considers the relationship between sensor behaviour and network performance and lifetime - Offers probabilistic forwarding routing protocols for randomly deployed wireless sensor networks - Describes a method for localizing multiple targets and estimating their number
Develop a whole range of location-aware personal devices and services using this all-encompassing reference of classical and state-of-the-art methods, techniques and applications for location and satellite positioning. Publisher's note.
Technological Developments in Networking, Education and Automation includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent testing using fuzzy logic; taxonomy of e-courses; and evaluation of online courses. Pedagogy: including benchmarking; group-learning; active learning; teaching of multiple subjects together; ontology; and knowledge management. Instruction Technology: including internet textbooks; virtual reality labs, instructional design, virtual models, pedagogy-oriented markup languages; graphic design possibilities; open source classroom management software; automatic email response systems; tablet-pcs; personalization using web mining technology; intelligent digital chalkboards; virtual room concepts for cooperative scientific work; and network technologies, management, and architecture. Coding and Modulation: Modeling and Simulation, OFDM technology , Space-time Coding, Spread Spectrum and CDMA Systems. Wireless technologies: Bluetooth , Cellular Wireless Networks, Cordless Systems and Wireless Local Loop, HIPERLAN, IEEE 802.11, Mobile Network Layer, Mobile Transport Layer, and Spread Spectrum. Network Security and applications: Authentication Applications, Block Ciphers Design Principles, Block Ciphers Modes of Operation, Electronic Mail Security, Encryption & Message Confidentiality, Firewalls, IP Security, Key Cryptography & Message Authentication, and Web Security. Robotics, Control Systems and Automation: Distributed Control Systems, Automation, Expert Systems, Robotics, Factory Automation, Intelligent Control Systems, Man Machine Interaction, Manufacturing Information System, Motion Control, and Process Automation. Vision Systems: for human action sensing, face recognition, and image processing algorithms for smoothing of high speed motion. Electronics and Power Systems: Actuators, Electro-Mechanical Systems, High Frequency Converters, Industrial Electronics, Motors and Drives, Power Converters, Power Devices and Components, and Power Electronics.