Distributed Iterative Decoding and Estimation Via Expectation Propagation
Author: John MacLaren Walsh
Publisher:
Published: 2006
Total Pages: 340
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: John MacLaren Walsh
Publisher:
Published: 2006
Total Pages: 340
ISBN-13:
DOWNLOAD EBOOKAuthor: David J. C. MacKay
Publisher: Cambridge University Press
Published: 2003-09-25
Total Pages: 694
ISBN-13: 9780521642989
DOWNLOAD EBOOKInformation theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Author: Simo Särkkä
Publisher: Cambridge University Press
Published: 2013-09-05
Total Pages: 255
ISBN-13: 110703065X
DOWNLOAD EBOOKA unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Author: William L. William L. Hamilton
Publisher: Springer Nature
Published: 2022-06-01
Total Pages: 141
ISBN-13: 3031015886
DOWNLOAD EBOOKGraph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Author: Dirk P. Kroese
Publisher: CRC Press
Published: 2019-11-20
Total Pages: 538
ISBN-13: 1000730778
DOWNLOAD EBOOKFocuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Author: Marc Mézard
Publisher: Oxford University Press
Published: 2009-01-22
Total Pages: 584
ISBN-13: 019857083X
DOWNLOAD EBOOKA very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Author: Jimmy Lin
Publisher: Springer Nature
Published: 2022-05-31
Total Pages: 171
ISBN-13: 3031021363
DOWNLOAD EBOOKOur world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks
Author: Martin J. Wainwright
Publisher: Now Publishers Inc
Published: 2008
Total Pages: 324
ISBN-13: 1601981848
DOWNLOAD EBOOKThe core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.
Author: Marco Dorigo
Publisher: MIT Press
Published: 2004-06-04
Total Pages: 324
ISBN-13: 9780262042192
DOWNLOAD EBOOKAn overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
Author: Sebastian Thrun
Publisher: MIT Press
Published: 2004
Total Pages: 1694
ISBN-13: 9780262201520
DOWNLOAD EBOOKPapers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.