In recent years, there has been a dramatic increase in grain-based fuel ethanol production in North America and around the world. Whether such production will result in a net energy gain or whether this is sustainable in the long term is under debate, but undoubtedly millions of tons of non-fermented residues are now produced annually for global tr
Sustainable Recovery and Reutilization of Cereal Processing By-Products addresses topics associated with the sustainable management of cereal manufacturing. Emphasis is placed on current, advisable practices, general valorization techniques of cereal processing by-products, and the functional properties of healthy cereal by-product components that lead to target applications in foods and nutraceuticals. Focus includes discussions on wheat bran, distillers' dried grains—based within the biorefinery concept, and different techniques for the separation, extraction, recovery and formulation of valuable compounds, including proteins, arabinoxylans, and beta-glucan. - Addresses topics associated with the sustainable management of cereal manufacturing - Places emphasis on current, advisable practices - Presents general valorization techniques of cereal processing by-products - Highlights the functional properties of healthy cereal by-product components that lead to target applications in foods and nutraceuticals
Frontiers in Bioenergy and Biofuels presents an authoritative and comprehensive overview of the possibilities for production and use of bioenergy, biofuels, and coproducts. Issues related to environment, food, and energy present serious challenges to the success and stability of nations. The challenge to provide energy to a rapidly increasing global population has made it imperative to find new technological routes to increase production of energy while also considering the biosphere's ability to regenerate resources. The bioenergy and biofuels are resources that may provide solutions to these critical challenges. Divided into 25 discreet parts, the book covers topics on characterization, production, and uses of bioenergy, biofuels, and coproducts. Frontiers in Bioenergy and Biofuels provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the energy field.
As members of the public becomes more concious of the food they consume and its content, higher standards are expected in the preparation of such food. The updated seventh edition of Nutrient Requirements of Beef Cattle explores the impact of cattle's biological, production, and environmental diversities, as well as variations on nutrient utilization and requirements. More enhanced than previous editions, this edition expands on the descriptions of cattle and their nutritional requirements taking management and environmental conditions into consideration. The book clearly communicates the current state of beef cattle nutrient requirements and animal variation by visually presenting related data via computer-generated models. Nutrient Requirements of Beef Cattle expounds on the effects of beef cattle body condition on the state of compensatory growth, takes an in-depth look at the variations in cattle type, and documents the important effects of the environment and stress on food intake. This volume also uses new data on the development of a fetus during pregnancy to prescribe nutrient requirements of gestating cattle more precisely. By focusing on factors such as product quality and environmental awareness, Nutrient Requirements of Beef Cattle presents standards and advisements for acceptable nutrients in a complete and conventional manner that promotes a more practical understanding and application.
This useful reference is the first book to address key aspects of food powder technology. It assembles organized and updated information on the physical properties, production, and functionality of food powder, previously unavailable in book form.
This book addresses various aspects of in vitro digestibility: • Application of meta-analyses and machine learning methods to predict methane production; • Methane production of sainfoin and alfalfa; • In vitro evaluation of different dietary methane mitigation strategies; • Rumen methanogenesis, rumen fermentation, and microbial community response; • The role of condensed tannins in the in vitro rumen fermentation kinetics; • Fermentation pattern of several carbohydrate sources; • Additive, synergistic, or antagonistic effects of plant extracts; • In vitro rumen degradation and fermentation characteristics of silage and hay; • In vitro digestibility, in situ degradability, and rumen fermentation of camelina co-products; • Ruminal fermentation parameters and microbial matters to odd- and branched-chain fatty acids; • Comparison of fecal versus rumen inocula for the estimation of NDF digestibility; • Rumen inoculum collected from cows at slaughter or from a continuous fermenter; • Seaweeds as ingredients of ruminant diets; • Rumen in vitro fermentation and in situ degradation kinetics of forage Brassica crops; • In vitro digestibility and rumen degradability of vetch varieties; • Intestinal digestibility in vitro of Vicia sativa varieties; • Ruminal in vitro protein degradation and apparent digestibility of Pisum sativum; • In vitro digestibility studies using equine fecal inoculum; • Effects of gas production recording system and pig fecal inoculum volume on kinetics; • In vitro methods of assessing protein quality for poultry; and • In vitro techniques using the DaisyII incubator.
The Wheat Improvement, Management, and Utilization book covers some of the most recent research areas that touch on enhancement of wheat productivity. It is obvious that wheat is one of the major staple crops grown globally. This crop has widely been researched on considering that, for instance, it is afflicted by various abiotic and biotic stresses that limit its growth and productivity. Today?s goal of wheat improvement consistently is to develop varieties that are high yielding with good processing and technological qualities, well adapted and tolerant to prevailing biotic and abiotic stresses. Therefore, this is a valuable reference book on wheat improvement, agronomy, and end-use qualities, particularly for those who work in research organizations and higher academic institutions. Moreover, it provides an invaluable resource for readers interested in a quick review of trending topics in wheat.
During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.