In this book authors for the first time introduce the notion of distance between any two m x n matrices. If the distance is 0 or m x n there is nothing interesting.
This book introduces for the first time the notion of fuzzy interval matrices, fuzzy interval bimatrices, fuzzy interval n-matrices, neutrosophic interval matrices, neutrosophic interval bimatrices, neutrosophic interval n-matrices, fuzzy neutrosophic interval matrices and fuzzy neutrosophic interval n-matrices, where n >= 2.These new notions find their applications in FCInM, FRInM, FBAItM, NCInM, NCRInM and NRInM models, where n>=1.It is important to mention that these Fuzzy interval n-matrices and Fuzzy neutrosophic interval n-matrices will find their usage in Leontief economic models and Markov chains that have lots of industrial applications.
In this book authors for the first time introduce new mathematical models analogous to Fuzzy Cognitive Maps (FCMs) and Neutrosophic Cognitive Maps (NCMs) models. Several types of MOD Cognitive Maps models are constructed in this book. They are MOD Cognitive Maps model, MOD dual number Cognitive Maps model, MOD neutrosophic Cognitive Maps model, MOD finite complex number Cognitive Maps model, MOD special dual like number Cognitive Maps model, and MOD special quasi dual number Cognitive Maps model.
In this book the authors for the first time construct MOD Relational Maps model analogous to Fuzzy Relational Maps (FRMs) model or Neutrosophic Relational Maps (NRMs) model using the MOD rectangular or relational matrix. The advantage of using these models is that the MOD fixed point pair or MOD limit cycle pair is obtained after a finite number of iterations.
This volume is a collection of ten papers by contributors F. Smarandache, F. Yuhua, K. Mondal, S. Pramanik, S. Broumi, J. Ye, A. A. Salama,, N. Easa, S. A. Elhafez, M. M. Lotfy, L. Kong, Y. Wu, P. Biswas, B. C. Giri, A. Mukkerjee, and S. Sarkar, focusing on a new kind of algebraic structures called (T, I, F)- Neutrosophic Structures; Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Methods; Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough Accuracy Score Function; an Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variable; Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System; Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers; Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers; Thesis-Antithesis-Neutrothesis, and Neutrosynthesis; Negating Four Color Theorem with Neutrosophy and Quadstage Method; and A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems.
For the involvement of uncertainty of varying degrees, when the total of the membership degree exceeds one or less than one, then the newer mathematical paradigm shift, Fuzzy Theory proves appropriate.For the past two or three decades, Fuzzy Theory has become the potent tool to study and analyze uncertainty involved in all problems. But, many real world problems also abound with the concept of indeterminacy.In this book, the new, powerful tool of neutrosophy that deals with indeterminacy is utilized. Innovative neutrosophic models are described.The theory of neutrosophic graphs is introduced and applied to fuzzy and neutrosophic models.Neutrosophic Logic and Neutrosophic Set (generalizations of Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set respectively) became strong tools for applications.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.
In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.