A Brief Introduction to Dispersion Relations

A Brief Introduction to Dispersion Relations

Author: José Antonio Oller

Publisher: Springer

Published: 2019-03-22

Total Pages: 142

ISBN-13: 3030135829

DOWNLOAD EBOOK

This text offers a brief introduction to the dispersion relations as an approach to calculate S-matrix elements, a formalism that allows one to take advantage of the analytical structure of scattering amplitudes following the basic principles of unitarity and causality. First, the case of two-body scattering is considered and then its contribution to other processes through final-state interactions is discussed. For two-body scattering amplitudes, the general expression for a partial-wave amplitude is derived in the approximation where the crossed channel dynamics is neglected. This is taken as the starting point for many interesting nonperturbative applications, both in the light and heavy quark sector. Subsequently crossed channel dynamics is introduced within the equations for calculating the partial-wave amplitudes. Some applications based on methods that treat crossed-channel dynamics perturbatively are discussed too. The last part of this introductory treatment is dedicated to the further impact of scattering amplitudes on a variety of processes through final-state interactions. Several possible approaches are discussed such as the Muskhelishvili-Omnes dispersive integral equations and other closed formulae. These different formalisms are then applied in particular to the study of resonances presenting a number of challenging properties. The book ends with a chapter illustrating the use of dispersion relations in the nuclear medium for the evaluation of the energy density in nuclear matter.


Dynamics of Galaxies

Dynamics of Galaxies

Author: Giuseppe Bertin

Publisher: Cambridge University Press

Published: 2014-04-21

Total Pages: 487

ISBN-13: 1107782740

DOWNLOAD EBOOK

Our understanding of galaxies, the building blocks of the Universe has advanced significantly in recent years. New observations from ground- and space-based telescopes, the discovery of dark matter, and new insights into its distribution have been instrumental in this. This textbook provides graduate students with a modern introduction to the gravitationally determined structure and evolution of galaxies. Readers will also benefit from detailed discussions of the issues involved in the process of modeling complex stellar systems. Additionally, the text provides an accessible framework for interpreting observations and devising new observational tests. Based on the author's extensive teaching experience, this second edition features an up-to-date view of basic phenomenology, a discussion of the structure of dark halos in galaxies, the dynamics of quasi-relaxed stellar systems and globular clusters, galaxies and gravitational lensing and an introduction to self-gravitating accretion disks. Extended problem sets are available from the accompanying resources website: www.cambridge.org/9781107000544.


Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 1998-11-25

Total Pages: 488

ISBN-13: 0387983767

DOWNLOAD EBOOK

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.


Solid State Physics

Solid State Physics

Author: Mohammad Abdul Wahab

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 628

ISBN-13: 9781842652183

DOWNLOAD EBOOK

Solid State Physics, a comprehensive study for the undergraduate and postgraduate students of pure and applied sciences, and engineering disciplines is divided into eighteen chapters. The First seven chapters deal with structure related aspects such as lattice and crystal structures, bonding, packing and diffusion of atoms followed by imperfections and lattice vibrations. Chapter eight deals mainly with experimental methods of determining structures of given materials. While the next nine chapters cover various physical properties of crystalline solids, the last chapter deals with the anisotropic properties of materials. This chapter has been added for benefit of readers to understand the crystal properties (anisotropic) in terms of some simple mathematical formulations such as tensor and matrix. New to the Second Edition: Chapter on: *Anisotropic Properties of Materials


Galactic Dynamics

Galactic Dynamics

Author: James Binney

Publisher: Princeton University Press

Published: 2008-01-27

Total Pages: 903

ISBN-13: 0691130272

DOWNLOAD EBOOK

An authoritative introduction to galactic astrophysics for advanced undergraduate students, graduate students, and researchers, this second edition has been updated with advances in the subject since the 1987 edition.


Applied Quantum Mechanics

Applied Quantum Mechanics

Author: A. F. J. Levi

Publisher: Cambridge University Press

Published: 2006-06

Total Pages: 21

ISBN-13: 0521860962

DOWNLOAD EBOOK

This updated and expanded edition makes quantum mechanics accessible to electrical engineers, mechanical engineers, materials scientists and applied physicists by using real-world applications and engineering examples. Numerous illustrations, exercises, worked examples and problems are included; Matlab source codes to support the text are available from www.cambridge.org//9780521860963.


Lattice dynamics

Lattice dynamics

Author: Johan Tidholm

Publisher: Linköping University Electronic Press

Published: 2020-11-02

Total Pages: 76

ISBN-13: 9179297595

DOWNLOAD EBOOK

The reason to perform calculations in material science usually falls into one of two categories: to predict or explain the origin of material properties. This thesis covers first-principle calculations for solids at extreme conditions, from both of the two mentioned categories. I primarily have studied the effects of high-pressure and high-temperature on lattice dynamics, mechanical and electronic properties. To treat the effects of temperature, ab initio molecular dynamics (AIMD) simulations and self-consistent phonon calculations, based on density functional theory, have been utilised. These approaches account for the temperature effects by considering thermally excited supercells as samples of a statistical ensemble. To extract properties from this representation, I have used methods which maps the supercell data to a unit cell representation or fits it to a simple model Hamiltonian. The small displacement method was used to analyse the dynamical stability for nitrides and polymorphs of silica, synthesised at high-pressure in a diamond anvil cell. The nitride compounds consist of a high amount of nitrogen either as chains, forming a porous framework together with transition metal atoms or as dinitrogen molecules, occupying the channels of the framework. The nitrogen chains consist of single- or double-bonded nitrogen atoms, making these compounds highly energetic. Polymorphs of silica can be used to model deep Earth liquids. These new polymorphs, named coesite-IV and coesite-V, consist of four-, five-, and six-oriented silicon. Some of the octahedra of the six-oriented silicon atoms, of these new phases, are sharing faces, which according to Pauling's third rule would make them highly unstable. My phonon calculations indicate these phases to be dynamically stable. Furthermore, my calculations predict higher compressibility for these new phases compared to the competing ones. By modelling silicate melts with coesite-IV and coesite-V, a more complex and compressible structure is expected, affecting the predicted seismic behaviour. I studied Kohn anomalies for body-centered cubic niobium by simulating this material with self-consistent phonon calculations. The electronic structure was studied by using a band unfolding technique, for which I obtained an effective unit cell representation of the electronic structure at elevated temperatures. Temperature primarily smeared the electronic states but did not induce significant shifts of the bands. In parallel, the anharmonicity of this system was studied using the temperature dependent effective potential method. Even close to the melting temperature, this element is remarkably harmonic. The experimentally observed disappearance of the Kohn anomalies with increased temperature is predominantly dependent, according to my calculations, on the temperature-induced smearing of the electronic states. Using stress-strain relations, accurate high-temperature elastic properties were predicted for Ti0.5Al0.5N. The simulations were performed with AIMD. The stresses were fitted using the least-squares method to a linear expression from which the elastic constants were derived. The results were compared with previously performed calculations that employed additional approximations. The results of the symmetry imposed force constant temperature dependent effective potential (SIFC-TDEP) method agrees well with our results. I also compared my results with TiN calculations that employed a similar methodology. My and the SIFC-TDEP results are reporting lower values for the polycrystalline moduli than the calculations for TiN. The data I generated were also used for a machine learned interatomic potential method, where moment tensor potentials were trained and evaluated, using this data. Den här avhandlingen handlar om beräkningar för material. När materialberäkningar utförs är det antingen för att förutsäga eller förklara egenskaper. De beräkningar som jag har gjort i denna avhandling är baserade på fundamentala fysiska lagar. Detta betyder att de är rent baserade på teori, och inte har anpassats efter resultat av experiment. Jag har i mitt arbete använt mig mycket utav en teori som kallas gitter dynamik. Den är definierad för periodiska material, det vill säga att atomerna i dessa material upprepas i periodiska mönster. Vi kan då anta att det finns en jämviktspunkt för alla atomerna, som de vibrerar omkring. Dessa vibrationer kan beskrivas som om atomerna påverkar varandra med fiktiva fjädrar. Genom att beräkna styrkan för dessa fjädrar kan vi beskriva vibrationerna av atomerna. Dessa vibrationer i sin tur är avgörande för materialets egenskaper. För att beskriva ett material vid en specifik temperatur har jag använt mig utav olika metoder för att simulera det. En simulering kan ses som ett “dator experiment”. Problemet är dock hur vi ska mäta egenskaperna i simuleringen. Ju större och mera komplex en simulering är, desto svårare blir det att beräkna egenskaperna av det simulerade materialet. Vi hamnar i en situation likt den vi skulle befinna oss om vi hade gjort ett experiment i verkligheten, och tvingas använda förenklade modeler för att kunna tolka resultatet. Jag har därför använt mig utav metoder för att utvinna vibrationer av atomer, elektrontillstånd eller elastiska egenskaper, specifikt utvecklade för att användas på denna typ utav simuleringar. Mitt arbete har kretsat kring hur dessa egenskaper påverkas av extrema temperaturer och tryck. De beräkningar jag har utfört vid höga tryck har varit för nyupptäckta nitrider och faser av kiseldioxid. Nitriderna är porösa material som innehåller en stor mängd kväve. Det höga kväveinehållet gör så att det lagras en stor mängd kemisk energi i enkel- och dubbelbindningar mellan kväveatomerna. De nya faserna av kiseldioxid har en betydelse för vår förståelse av jordens inre. Deras existens öppnar upp för att det kan finnas mera komplexa och ihoptryckbara flytande material, under jordens nedre mantel, än vad tidigare har varit antaget. Mina beräkningar har bekräftat strukturerna för dessa nyupptäckta material. Vid höga temperaturer har jag studerat för metallen niob hur vibrationerna av atomerna är relaterade till olika elektrontillstånd. För specifika vibrationer ökar frekvensen med ökad temperatur. Detta är något ovanligt eftersom vibrationernas frekvenser vanligtvis brukar minska med ökad temperatur. Mina simulering för denna metal överensstämmer med resultat från experiment. Orsaken till varför visa vibrationers frekvenser ökar kan jag förklara med att elektrontillståndens enskilda energier varierar över tid på grund av den ökade temperaturen. Jag har även använt mig av simuleringar för att beräkna elastiska egenskaper av legeringen Ti0.5Al0.5N. Ti1?xAlxN legeringar används som beläggningar på skärverktyg som används för metall. För att öka effektiviteten av beläggningen, behövs det detaljerad kunskap av dess mekaniska egenskaper för den temperatur som de används vid. Jag beräknade därför så noggrant som möjligt de elastiska egenskaperna för Ti0.5Al0.5N. Dessa beräkningar är avsedda för att användas som en referens för andra beräkningsmässigt billigare metoder. Datan som genererades från mina simuleringar användes även för en sådan metod, baserad på maskininlärning.


All Things Flow

All Things Flow

Author: William Smyth

Publisher:

Published: 2019-09-10

Total Pages: 186

ISBN-13: 9781794807525

DOWNLOAD EBOOK

This is a graduate-level textbook for students in the natural sciences. After reviewing the necessary math, it describes the logical path from Newton's laws of motion to our modern understanding of fluid mechanics. It does not describe engineering applications but instead focuses on phenomena found in nature. Once developed, the theory is applied to three familiar examples of flows that can be observed easily in Earth's atmosphere, oceans, rivers and lakes: vortices, interfacial waves, and hydraulic transitions. The student will then have both (1) the tools to analyze a wide range of naturally-occurring flows and (2) a solid foundation for more advanced studies in atmospheric dynamics and physical oceanography. Appendices give more detailed explanations and optional topics.


Elasticity and Fluid Dynamics: Volume 3 of Modern Classical Physics

Elasticity and Fluid Dynamics: Volume 3 of Modern Classical Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2021-05-25

Total Pages: 480

ISBN-13: 069121557X

DOWNLOAD EBOOK

A groundbreaking textbook on twenty-first-century fluids and elastic solids and their applications Kip Thorne and Roger Blandford’s monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Elasticity and Fluid Dynamics provides an essential introduction to these subjects. Fluids and elastic solids are everywhere—from Earth’s crust and skyscrapers to ocean currents and airplanes. They are central to modern physics, astrophysics, the Earth sciences, biophysics, medicine, chemistry, engineering, and technology, and this centrality has intensified in recent years—so much so that a basic understanding of the behavior of elastic solids and fluids should be part of the repertoire of every physicist and engineer and almost every other natural scientist. While both elasticity and fluid dynamics involve continuum physics and use similar mathematical tools and modes of reasoning, each subject can be readily understood without the other, and the book allows them to be taught independently, with the first two chapters introducing and covering elasticity and the last six doing the same for fluid dynamics. The book also can serve as supplementary reading for many other courses, including in astrophysics, geophysics, and aerodynamics. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional “Track 2” sections make this an ideal book for a one-quarter or one-semester course in elasticity, fluid dynamics, or continuum physics An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.