This new book will be welcomed by econometricians and students of econometrics everywhere. Introducing discrete time modelling techniques and bridging the gap between economics and econometric literature, this ambitious book is sure to be an invaluable resource for all those to whom the terms unit roots, cointegration and error correction forms, ch
Primarily of interest to upper level students carrying out economic modelling, this book bridges a gap between economics and econometric literature by introducing and developing the techniques of discrete time modelling.
A unified, comprehensive, and up-to-date introduction to the analytical and numerical tools for solving dynamic economic problems. This book offers a unified, comprehensive, and up-to-date treatment of analytical and numerical tools for solving dynamic economic problems. The focus is on introducing recursive methods—an important part of every economist's set of tools—and readers will learn to apply recursive methods to a variety of dynamic economic problems. The book is notable for its combination of theoretical foundations and numerical methods. Each topic is first described in theoretical terms, with explicit definitions and rigorous proofs; numerical methods and computer codes to implement these methods follow. Drawing on the latest research, the book covers such cutting-edge topics as asset price bubbles, recursive utility, robust control, policy analysis in dynamic New Keynesian models with the zero lower bound on interest rates, and Bayesian estimation of dynamic stochastic general equilibrium (DSGE) models. The book first introduces the theory of dynamical systems and numerical methods for solving dynamical systems, and then discusses the theory and applications of dynamic optimization. The book goes on to treat equilibrium analysis, covering a variety of core macroeconomic models, and such additional topics as recursive utility (increasingly used in finance and macroeconomics), dynamic games, and recursive contracts. The book introduces Dynare, a widely used software platform for handling a range of economic models; readers will learn to use Dynare for numerically solving DSGE models and performing Bayesian estimation of DSGE models. Mathematical appendixes present all the necessary mathematical concepts and results. Matlab codes used to solve examples are indexed and downloadable from the book's website. A solutions manual for students is available for sale from the MIT Press; a downloadable instructor's manual is available to qualified instructors.
This book contains a concise description of important mathematical methods of dynamics and suitable economic models. It covers discrete as well as continuous-time systems, linear and nonlinear models. Mixing traditional and modern materials, the study covers dynamics with and without optimization, naive and rational expectations, respectively. In addition to standard models of growth and cycles, the book also contains original studies on control of a multisector economy and expectations-driven multicohort economy. Numerous examples, problems (with solutions) and figures complete the book.
The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.
Focusing on deterministic models in discrete time, this concise yet rigorous textbook provides a clear and systematic introduction to the theory and application of dynamic economic models. It guides students through the most popular model structures and solution concepts, from the simplest dynamic economic models through to complex problems of optimal policy design in dynamic general equilibrium frameworks. Chapters feature theorems and practical hints, and seventy-five worked examples highlight the various methods and results that can be applied in dynamic economic models. Notation and formulation is uniform throughout, so students can easily discern the similarities and differences between various model classes. Chapters include more than sixty exercises for students to self-test their analytical skills, and password-protected solutions are available for instructors on the companion website. Assuming no prior knowledge of dynamic economic analysis or dynamic optimization, this textbook is ideal for advanced students in economics.
Dynamic Programming in Economics is an outgrowth of a course intended for students in the first year PhD program and for researchers in Macroeconomics Dynamics. It can be used by students and researchers in Mathematics as well as in Economics. The purpose of Dynamic Programming in Economics is twofold: (a) to provide a rigorous, but not too complicated, treatment of optimal growth models in infinite discrete time horizon, (b) to train the reader to the use of optimal growth models and hence to help him to go further in his research. We are convinced that there is a place for a book which stays somewhere between the "minimum tool kit" and specialized monographs leading to the frontiers of research on optimal growth.
This book provides surveys of significant results of the theory of optimal growth, as well as the techniques of dynamic optimization theory on which they are based. With the results and methods of this theory researchers can apply these versatile methods of analysis in the area of dynamic economics.
This rigorous but brilliantly lucid book presents a self-contained treatment of modern economic dynamics. Stokey, Lucas, and Prescott develop the basic methods of recursive analysis and illustrate the many areas where they can usefully be applied.
The Hamiltonian Approach to Dynamic Economics focuses on the application of the Hamiltonian approach to dynamic economics and attempts to provide some unification of the theory of heterogeneous capital. Emphasis is placed on the stability of long-run steady-state equilibrium in models of heterogeneous capital accumulation. Generalizations of the Samuelson-Scheinkman approach are also given. Moreover, conditions are sought on the geometry of the Hamiltonian function (that is, on static technology) that suffice to preserve under (not necessarily small) perturbation the basic properties of the Hamiltonian dynamical system. Comprised of eight essays, this book begins with an introduction to Hamiltonian dynamics in economics, followed by a discussion on optimal steady states of n-sector growth models when utility is discounted. Optimal growth and decentralized or descriptive growth models in both continuous and discrete time are treated as applications of Hamiltonian dynamics. Theproblem of optimal growth with zero discounting is considered, with emphasis on a steepness condition on the Hamiltonian function. The general problem of decentralized growth with instantaneously adjusted expectations about price changes is also analyzed, along with the global asymptotic stability of optimal control systems with applications to the theory of economic growth. This monograph will be of value to mathematicians and economists.