Discrete Mathematics and Symmetry

Discrete Mathematics and Symmetry

Author: Angel Garrido

Publisher: MDPI

Published: 2020-03-05

Total Pages: 458

ISBN-13: 3039281909

DOWNLOAD EBOOK

Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.


Symmetry in Graphs

Symmetry in Graphs

Author: Ted Dobson

Publisher: Cambridge University Press

Published: 2022-05-12

Total Pages: 527

ISBN-13: 1108429068

DOWNLOAD EBOOK

The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.


Symmetry in Graph Theory

Symmetry in Graph Theory

Author: Jose M. Rodriguez

Publisher: MDPI

Published: 2019-03-14

Total Pages: 340

ISBN-13: 303897658X

DOWNLOAD EBOOK

This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of “Graph Theory”. Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view.


Discrete Geometry and Symmetry

Discrete Geometry and Symmetry

Author: Marston D. E. Conder

Publisher: Springer

Published: 2018-06-11

Total Pages: 349

ISBN-13: 331978434X

DOWNLOAD EBOOK

This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.


Symmetric Designs

Symmetric Designs

Author: Eric S. Lander

Publisher: Cambridge University Press

Published: 1983-01-20

Total Pages: 321

ISBN-13: 052128693X

DOWNLOAD EBOOK

Symmetric designs are an important class of combinatorial structures which arose first in the statistics and are now especially important in the study of finite geometries. This book presents some of the algebraic techniques that have been brought to bear on the question of existence, construction and symmetry of symmetric designs - including methods inspired by the algebraic theory of coding and by the representation theory of finite groups - and includes many results. Rich in examples and containing over 100 problems, the text also provides an introduction to many of the modern algebraic approaches used, through six lengthy appendices and supplementary problems. The book will be of interest to both combinatorialists and algebraists, and could be used as a course text for a graduate course.


Applied Geometry and Discrete Mathematics

Applied Geometry and Discrete Mathematics

Author: Peter Gritzmann

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 660

ISBN-13: 9780821870839

DOWNLOAD EBOOK

This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's 65th birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics, education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honour of Klee's achievements, this volume presents more than 40 papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, this book shows how different branches of mathematics interact. It is a fitting tribute to one of the leading figures in discrete mathematics.


Frameworks, Tensegrities, and Symmetry

Frameworks, Tensegrities, and Symmetry

Author: Robert Connelly

Publisher: Cambridge University Press

Published: 2022-01-27

Total Pages: 299

ISBN-13: 0521879108

DOWNLOAD EBOOK

Why don't things fall down? Engineering meets mathematics in this introduction to the geometry of rigid and flexible structures.


A Spiral Workbook for Discrete Mathematics

A Spiral Workbook for Discrete Mathematics

Author: Harris Kwong

Publisher: Open SUNY Textbooks

Published: 2015-11-06

Total Pages: 298

ISBN-13: 9781942341161

DOWNLOAD EBOOK

A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.


Discrete Mathematics

Discrete Mathematics

Author: Richard Johnsonbaugh

Publisher: Prentice Hall

Published: 2009

Total Pages: 785

ISBN-13: 0131593188

DOWNLOAD EBOOK

For a one- or two-term introductory course in discrete mathematics. Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.