Representations of Discrete Functions

Representations of Discrete Functions

Author: Tsutomu Sasao

Publisher: Springer Science & Business Media

Published: 1996-04-30

Total Pages: 360

ISBN-13: 9780792397205

DOWNLOAD EBOOK

Representations of Discrete Functions is an edited volume containing 13 chapter contributions from leading researchers with a focus on the latest research results. The first three chapters are introductions and contain many illustrations to clarify concepts presented in the text. It is recommended that these chapters are read first. The book then deals with the following topics: binary decision diagrams (BDDs), multi-terminal binary decision diagrams (MTBDDs), edge-valued binary decision diagrams (EVBDDs), functional decision diagrams (FDDs), Kronecker decision diagrams (KDDs), binary moment diagrams (BMDs), spectral transform decision diagrams (STDDs), ternary decision diagrams (TDDs), spectral transformation of logic functions, other transformations oflogic functions, EXOR-based two-level expressions, FPRM minimization with TDDs and MTBDDs, complexity theories on FDDs, multi-level logic synthesis, and complexity of three-level logic networks. Representations of Discrete Functions is designed for CAD researchers and engineers and will also be of interest to computer scientists who are interested in combinatorial problems. Exercises prepared by the editors help make this book useful as a graduate level textbook.


Logic Functions and Equations

Logic Functions and Equations

Author: Bernd Steinbach

Publisher: Springer Science & Business Media

Published: 2009-01-29

Total Pages: 232

ISBN-13: 1402095953

DOWNLOAD EBOOK

Tsutomu Sasao – Kyushu Institute of Technology, Japan The material covered in this book is quite unique especially for p- ple who are reading English, since such material is quite hard to ?nd in the U.S. literature. German and Russian people have independently developed their theories, but such work is not well known in the U.S. societies. On the other hand, the theories developed in the U.S. are not conveyed to the other places. Thus, the same theory is re-invented or re-discovered in various places. For example, the switching theory was developed independently in the U.S., Europe, and Japan, almost at the same time [4, 18, 19]. Thus, the same notions are represented by di?- ent terminologies. For example, the Shegalkin polynomial is often called complement-free ring-sum, Reed-Muller expression [10], or Positive - larityReed-Mullerexpression [19].Anyway,itisquitedesirablethatsuch a unique book like this is written in English, and many people can read it without any di?culties. The authors have developed a logic system called XBOOLE.Itp- forms logical operations on the given functions. With XBOOLE, the readers can solve the problems given in the book. Many examples and complete solutions to the problems are shown, so the readers can study at home. I believe that the book containing many exercises and their solutions [9] is quite useful not only for the students, but also the p- fessors.


Analysis and Synthesis for Discrete-Time Switched Systems

Analysis and Synthesis for Discrete-Time Switched Systems

Author: Zhongyang Fei

Publisher: Springer

Published: 2019-08-02

Total Pages: 212

ISBN-13: 3030258122

DOWNLOAD EBOOK

This book presents recent theoretical advances in the analysis and synthesis of discrete-time switched systems under the time-dependent switching scheme, including stability and disturbance attenuation performance analysis, control and filtering, asynchronous switching, finite-time analysis and synthesis, and reachable set estimation. It discusses time-scheduled technology, which can achieve a better performance and reduce conservatism compared with the traditional time-independent approach. Serving as a reference resource for researchers and engineers in the system and control community, it is also useful for graduate and undergraduate students interested in switched systems and their applications.


Modeling Digital Switching Circuits with Linear Algebra

Modeling Digital Switching Circuits with Linear Algebra

Author: Mitchell A. Thornton

Publisher: Morgan & Claypool Publishers

Published: 2014-04-01

Total Pages: 161

ISBN-13: 1627052348

DOWNLOAD EBOOK

Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transfer functions is ubiquitous in many areas of engineering and their rich background in linear systems theory and signal processing is easily applied to digital switching circuits with this model. The common tasks of circuit simulation and justification are specific examples of the application of the linear algebraic model and are described in detail. The advantages offered by the new model as compared to traditional methods are emphasized throughout the book. Furthermore, the new approach is easily generalized to other types of information processing circuits such as those based upon multiple-valued or quantum logic; thus providing a unifying mathematical framework common to each of these areas. Modeling Digital Switching Circuits with Linear Algebra provides a blend of theoretical concepts and practical issues involved in implementing the method for circuit design tasks. Data structures are described and are shown to not require any more resources for representing the underlying matrices and vectors than those currently used in modern electronic design automation (EDA) tools based on the Boolean model. Algorithms are described that perform simulation, justification, and other common EDA tasks in an efficient manner that are competitive with conventional design tools. The linear algebraic model can be used to implement common EDA tasks directly upon a structural netlist thus avoiding the intermediate step of transforming a circuit description into a representation of a set of switching functions as is commonly the case when conventional Boolean techniques are used. Implementation results are provided that empirically demonstrate the practicality of the linear algebraic model.


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-30

Total Pages: 238

ISBN-13: 9781724572639

DOWNLOAD EBOOK

Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.


Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook

Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook

Author: Svetlana N. Yanushkevich

Publisher: CRC Press

Published: 2005-12-22

Total Pages: 960

ISBN-13: 9780849334245

DOWNLOAD EBOOK

Decision diagram (DD) techniques are very popular in the electronic design automation (EDA) of integrated circuits, and for good reason. They can accurately simulate logic design, can show where to make reductions in complexity, and can be easily modified to model different scenarios. Presenting DD techniques from an applied perspective, Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook provides a comprehensive, up-to-date collection of DD techniques. Experts with more than forty years of combined experience in both industrial and academic settings demonstrate how to apply the techniques to full advantage with more than 400 examples and illustrations. Beginning with the fundamental theory, data structures, and logic underlying DD techniques, they explore a breadth of topics from arithmetic and word-level representations to spectral techniques and event-driven analysis. The book also includes abundant references to more detailed information and additional applications. Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook collects the theory, methods, and practical knowledge necessary to design more advanced circuits and places it at your fingertips in a single, concise reference.


Analysis and Design of Hybrid Systems 2006

Analysis and Design of Hybrid Systems 2006

Author: Christos Cassandras

Publisher: Elsevier

Published: 2006-11-21

Total Pages: 437

ISBN-13: 0080475841

DOWNLOAD EBOOK

This volume contains the proceedings of Analysis and Design of Hybrid Systems 2006: the 2nd IFAC Conference on Analysis and Design of Hybrid Systems, organized in Alghero (Italy) on June 7-9, 2006. ADHS is a series of triennial meetings that aims to bring together researchers and practitioners with a background in control and computer science to provide a survey of the advances in the field of hybrid systems, and of their ability to take up the challenge of analysis, design and verification of efficient and reliable control systems. ADHS'06 is the second Conference of this series after ADHS'03 in Saint Malo. - 65 papers selected through careful reviewing process - Plenary lectures presented by three distinguished speakers - Featuring interesting new research topics


Computer Arithmetics for Nanoelectronics

Computer Arithmetics for Nanoelectronics

Author: Vlad P. Shmerko

Publisher: CRC Press

Published: 2009-02-23

Total Pages: 841

ISBN-13: 1420066218

DOWNLOAD EBOOK

Emphasizes the Basic Principles of Computational Arithmetic and Computational Structure Design Taking an interdisciplinary approach to the nanoscale generation of computer devices and systems, Computer Arithmetics for Nanoelectronics develops a consensus between computational properties provided by data structures and phenomenological properties of nano and molecular technology. Covers All Stages of the Design Cycle, from Task Formulation to Molecular-Based Implementation The book introduces the theoretical base and properties of various data structures, along with techniques for their manipulation, optimization, and implementation. It also assigns the computational properties of logic design data structures to 3D structures, furnishes information-theoretical measures and design aspects, and discusses the testability problem. The last chapter presents a nanoscale prospect for natural computing based on assorted computing paradigms from nature. Balanced Coverage of State-of-the-Art Concepts, Techniques, and Practices Up-to-date, comprehensive, and pragmatic in its approach, this text provides a unified overview of the relationship between the fundamentals of digital system design, computer architectures, and micro- and nanoelectronics.


Logic Design of NanoICS

Logic Design of NanoICS

Author: Svetlana N. Yanushkevich

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 484

ISBN-13: 142003829X

DOWNLOAD EBOOK

Today's engineers will confront the challenge of a new computing paradigm, relying on micro- and nanoscale devices. Logic Design of NanoICs builds a foundation for logic in nanodimensions and guides you in the design and analysis of nanoICs using CAD. The authors present data structures developed toward applications rather than a purely theoretical treatment. Requiring only basic logic and circuits background, Logic Design of NanoICs draws connections between traditional approaches to design and modern design in nanodimensions. The book begins with an introduction to the directions and basic methodology of logic design at the nanoscale, then proceeds to nanotechnologies and CAD, graphical representation of switching functions and networks, word-level and linear word-level data structures, 3-D topologies based on hypercubes, multilevel circuit design, and fault-tolerant computation in hypercube-like structures. The authors propose design solutions and techniques, going beyond the underlying technology to provide more applied knowledge. This design-oriented reference is written for engineers interested in developing the next generation of integrated circuitry, illustrating the discussion with approximately 250 figures and tables, 100 equations, 250 practical examples, and 100 problems. Each chapter concludes with a summary, references, and a suggested reading section.