I’Ve live in an astornshingly complex world, Yet what we do in our everyday lives seems simple enough. Most of us conform to society’s rules, pursue familiar strategies, and achieve reasonably predictable outcomes. In our role as economic agents, we simply peddle our wares and earn our daily bread as best we can.So where on earth does this astonishing complexity come from? Much of it is ubiquitous in nature, to be sure, but part of it lies within and between us. Part of it comes from those games of interaction that humans play—games against nature, games against each other, games of competition, games of cooperation. In bygone eras, people simply hunted and gathered to come up with dinner. Today you can find theoretical economists scratching mysterious equations on whiteboards (not even blackboards) and getting paid to do this. In the modern economy, most of us make our living in a niche created for us by what others do. Because we’ve become more dependent on each other, our economy as a whole has become more strongly interactive.
"What The Double Helix did for biology, David Warsh's Knowledge and the Wealth of Nations does for economics." —Boston Globe A stimulating and inviting tour of modern economics centered on the story of one of its most important breakthroughs. In 1980, the twenty-four-year-old graduate student Paul Romer tackled one of the oldest puzzles in economics. Eight years later he solved it. This book tells the story of what has come to be called the new growth theory: the paradox identified by Adam Smith more than two hundred years earlier, its disappearance and occasional resurfacing in the nineteenth century, the development of new technical tools in the twentieth century, and finally the student who could see further than his teachers. Fascinating in its own right, new growth theory helps to explain dominant first-mover firms like IBM or Microsoft, underscores the value of intellectual property, and provides essential advice to those concerned with the expansion of the economy. Like James Gleick's Chaos or Brian Greene's The Elegant Universe, this revealing book takes us to the frontlines of scientific research; not since Robert Heilbroner's classic work The Worldly Philosophers have we had as attractive a glimpse of the essential science of economics.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
This series will include monographs and collections of studies devoted to the investigation and exploration of knowledge, information, and data processing systems of all kinds, no matter whether human, (other) animal, or machine. Its scope is intended to span the full range of interests from classical problems in the philosophy of mind and philosophical psychology through issues in cognitive psychology and sociobiology (concerning the mental capabilities of other species) to ideas related to artificial intelligence and to computer science. While primary emphasis will be placed upon theoretical, conceptual, and epistemological aspects of these problems and domains, empirical, experimental, and methodological studies will also appear from time to time. The present volume offers a broad and imaginative approach to the study of the mind, which emphasizes several themes, namely: the importance of functional organization apart from the specific material by means of which it may be implemented; the use of modeling to simulate these functional processes and subject them to certain kinds of tests; the use of mentalistic language to describe and predict the behavior of artifacts; and the subsumption of processes of adaptation, learning, and intelligence by means of explanatory principles. The author has produced a rich and complex, lucid and readable discussion that clarifies and illuminates many of the most difficult problems arising within this difficult domain.
This book discusses and illustrates the emergent behavior produced due to cumulative pattern of interactions in a strongly interactive economy, reflecting the diversity of decisions taken by different economic agents. It takes a look at unexpected socioeconomic changes during the past millennium.
Herbert Simon's classic work on artificial intelligence in the expanded and updated third edition from 1996, with a new introduction by John E. Laird. Herbert Simon's classic and influential The Sciences of the Artificial declares definitively that there can be a science not only of natural phenomena but also of what is artificial. Exploring the commonalities of artificial systems, including economic systems, the business firm, artificial intelligence, complex engineering projects, and social plans, Simon argues that designed systems are a valid field of study, and he proposes a science of design. For this third edition, originally published in 1996, Simon added new material that takes into account advances in cognitive psychology and the science of design while confirming and extending the book's basic thesis: that a physical symbol system has the necessary and sufficient means for intelligent action. Simon won the Nobel Prize for Economics in 1978 for his research into the decision-making process within economic organizations and the Turing Award (considered by some the computer science equivalent to the Nobel) with Allen Newell in 1975 for contributions to artificial intelligence, the psychology of human cognition, and list processing. The Sciences of the Artificial distills the essence of Simon's thought accessibly and coherently. This reissue of the third edition makes a pioneering work available to a new audience.
A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
"Read The Economic Singularity if you want to think intelligently about the future." Aubrey de Grey Artificial intelligence (AI) is overtaking our human ability to absorb and process information. Robots are becoming increasingly dextrous, flexible, and safe to be around (except the military ones). It is our most powerful technology, and you need to understand it. This new book from best-selling AI writer Calum Chace argues that within a few decades, most humans will not be able to work for money. Self-driving cars will probably be the canary in the coal mine, providing a wake-up call for everyone who isn't yet paying attention. All jobs will be affected, from fast food McJobs to lawyers and journalists. This is the single most important development facing humanity in the first half of the 21st century. The fashionable belief that Universal Basic Income is the solution is only partly correct. We are probably going to need an entirely new economic system, and we better start planning soon - for the Economic Singularity! The outcome can be very good - a world in which machines do all the boring jobs and humans do pretty much what they please. But there are major risks, which we can only avoid by being alert to the possible futures and planning how to avoid the negative ones."
Advances in artificial intelligence (AI) highlight the potential of this technology to affect productivity, growth, inequality, market power, innovation, and employment. This volume seeks to set the agenda for economic research on the impact of AI. It covers four broad themes: AI as a general purpose technology; the relationships between AI, growth, jobs, and inequality; regulatory responses to changes brought on by AI; and the effects of AI on the way economic research is conducted. It explores the economic influence of machine learning, the branch of computational statistics that has driven much of the recent excitement around AI, as well as the economic impact of robotics and automation and the potential economic consequences of a still-hypothetical artificial general intelligence. The volume provides frameworks for understanding the economic impact of AI and identifies a number of open research questions. Contributors: Daron Acemoglu, Massachusetts Institute of Technology Philippe Aghion, Collège de France Ajay Agrawal, University of Toronto Susan Athey, Stanford University James Bessen, Boston University School of Law Erik Brynjolfsson, MIT Sloan School of Management Colin F. Camerer, California Institute of Technology Judith Chevalier, Yale School of Management Iain M. Cockburn, Boston University Tyler Cowen, George Mason University Jason Furman, Harvard Kennedy School Patrick Francois, University of British Columbia Alberto Galasso, University of Toronto Joshua Gans, University of Toronto Avi Goldfarb, University of Toronto Austan Goolsbee, University of Chicago Booth School of Business Rebecca Henderson, Harvard Business School Ginger Zhe Jin, University of Maryland Benjamin F. Jones, Northwestern University Charles I. Jones, Stanford University Daniel Kahneman, Princeton University Anton Korinek, Johns Hopkins University Mara Lederman, University of Toronto Hong Luo, Harvard Business School John McHale, National University of Ireland Paul R. Milgrom, Stanford University Matthew Mitchell, University of Toronto Alexander Oettl, Georgia Institute of Technology Andrea Prat, Columbia Business School Manav Raj, New York University Pascual Restrepo, Boston University Daniel Rock, MIT Sloan School of Management Jeffrey D. Sachs, Columbia University Robert Seamans, New York University Scott Stern, MIT Sloan School of Management Betsey Stevenson, University of Michigan Joseph E. Stiglitz. Columbia University Chad Syverson, University of Chicago Booth School of Business Matt Taddy, University of Chicago Booth School of Business Steven Tadelis, University of California, Berkeley Manuel Trajtenberg, Tel Aviv University Daniel Trefler, University of Toronto Catherine Tucker, MIT Sloan School of Management Hal Varian, University of California, Berkeley