Proceedings of the 5th International Symposium on Plasma and Energy Conversion
Author: Zhi Fang
Publisher: Springer Nature
Published:
Total Pages: 725
ISBN-13: 9819722454
DOWNLOAD EBOOKRead and Download eBook Full
Author: Zhi Fang
Publisher: Springer Nature
Published:
Total Pages: 725
ISBN-13: 9819722454
DOWNLOAD EBOOKAuthor: Richard H. Huddlestone
Publisher:
Published: 1965
Total Pages: 652
ISBN-13:
DOWNLOAD EBOOKAuthor: Hans Griem
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 425
ISBN-13: 0323150942
DOWNLOAD EBOOKSpectral Line Broadening by Plasmas deals with spectral line broadening by plasmas and covers topics ranging from quasi-static approximation and impact approximation to intermediate approximations and correlation effects. Experimental results for hydrogen lines, lines with forbidden components, and ionized helium lines are presented. Applications such as density and temperature measurements are also considered. Comprised of four chapters, this volume begins with an overview of the effects of electric fields from electrons and ions (both acting as point charges) on spectral line shapes. The next chapter surveys theoretical work, paying particular attention to quasi-static, impact, and intermediate approximations as well as correlation effects. Stark broadening experiments are then discussed, with special emphasis on experiments capable of checking the accuracy or validity limits of the various approximations. The final chapter is devoted to applications in laboratory plasma physics and astronomy, focusing on density and temperature measurements and opacity calculations as well as the analysis of stellar atmospheres, amplitudes and spectra of plasma waves, and radio frequency lines. This book should appeal to students, practitioners, and researchers in pure and applied physics.
Author: M. Capitelli
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 302
ISBN-13: 3662041588
DOWNLOAD EBOOKEmphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.
Author: XinPei Lu
Publisher: CRC Press
Published: 2019-04-23
Total Pages: 388
ISBN-13: 0429620721
DOWNLOAD EBOOKNonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.
Author:
Publisher:
Published: 2008
Total Pages: 822
ISBN-13:
DOWNLOAD EBOOKAuthor: Vasile I. Parvulescu
Publisher: John Wiley & Sons
Published: 2012-07-10
Total Pages: 423
ISBN-13: 3527330062
DOWNLOAD EBOOKFilling the gap for a book that covers not only plasma in gases but also in liquids, this is all set to become the standard reference for this topic. It provides a broad-based overview of plasma-chemical and plasmacatalytic processes generated by electrical discharges in gases, liquids and gas/liquid environments in both fundamental and applied aspects by focusing on their environmental and green applications and also taking into account their practical and economic viability. With the topics addressed by an international group of major experts, this is a must-have for scientists, engineers, students and postdoctoral researchers specializing in this field.
Author: Alexander Fridman
Publisher: Cambridge University Press
Published: 2008-05-05
Total Pages:
ISBN-13: 1139471732
DOWNLOAD EBOOKProviding a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Author: Mikhail N. Shneider
Publisher: IOP Publishing Limited
Published: 2019-11-29
Total Pages: 185
ISBN-13: 9780750323703
DOWNLOAD EBOOKWritten by leading experts in the field, the first edition of this textbook was the first of its kind to address numerous potential applications such as the technology of high-voltage insulation in pulsed inhomogeneous fields, and applications related to cavitation development in liquid dielectrics, treatment of different materials and plasma medicine. This second edition addresses the development of the theory over the past few years and features extensive revisions, as well as some expanded chapters. A new inclusion is an explanation of how the critical pressure at which cavitation is initiated is determined according to the surface tension coefficient at the boundary of small nanovoids and microbubbles. Discussion of the quantum mechanical nature of the cavitation inception in liquid helium is also provided, along with the derived values of critical negative pressure for the appearance of cavitation, and its characteristics at low temperatures.
Author: Paul K. Chu
Publisher: CRC Press
Published: 2013-07-15
Total Pages: 497
ISBN-13: 1466509902
DOWNLOAD EBOOKWritten by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.