This paper outlines crop improvement, strategic agronomy, and natural resource management research concerns central to CIMMYT¦s mission and which models can help address. Authors also discuss related issues, including model documentation and data management. Although CIMMYT has little comparative advantage in model development per se, the center has much to contribute to others' development and refinement efforts, to the availability of quality data, and to the promotion of models and training in their use, and active participation in these areas will ultimately result in better models for CIMMYT's own aims.
The use of crop-soil modelling has so far been mainly confined to the research community. Practical applications have occurred in the areas of decision tools for irrigation studies and pest management. However, there is potential to increase its applied use.This book reviews progress in crop-soil simulation modelling and assesses its application to agriculture in developing countries. It is based on work sponsored by the Natural Resources Systems Programme of the UK Department for International Development.
Merging topical data from recently published review and research articles, as well as the knowledge and insight of industry experts, Omics Applications in Crop Science delves into plant science, and various technologies that use omics in agriculture. This book concentrates on crop breeding and environmental applications, and examines the applications of various omics technologies including genomics, transcriptomics, proteomics, metabolomics to important agronomic, horticultural, medicinal, plantation, fiber, forage, and bioenergy crops. It covers the application of omics technologies in several important crops, including cereal, and pulse. It explores the brassica species, drought tolerance in rice, and genetic engineering of the potato. The book discusses temperate fruits; and omics of medicinal plants, the metabolomics of Catharanthus roseus and how the medicinally important alkaloids of the plant are produced, as well as the omics of another important medicinal plant, Withania somnifera. It examines floriculture, the omics advances in tea, and omics strategies in improving the fiber qualities of cotton. It provides omics-related information on forest trees and forage crops, and offers a detailed account on how omics technologies are applicable in molecular farming, along with associated issues such as commercial aspects of molecular farming, clinical trials of plant-produced pharmaceuticals, regulatory issues and intellectual property rights. Written as a resource for plant biologists, plant breeders, agriculture scientists, researchers and college students studying various fields in agriculture, and the agri industries, OMICS Applications in Crop Science compiles the latest research in this essential field of modern crop and plant science utilizing various omics technologies and their applications in a number of important crops/plants from agronomy, pomology, olericulture, floriculture, medicinal plants, plantation and energy crops, agro-forestry, and more.
The IFPRI roundtable, with its focus on the prospects of a long-term balance between food demand and supply, provided a link between the two conferences, as the adequacy of food supply at affordable prices for future populations is a crucial element in a strategy designed to alleviate poverty and accelerate growth, in the context of an increasing population.