The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.
Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...). This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to a cross-fertilization of both areas.
Proceedings of the 2019 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV'19) held July 29th - August 1st, 2019 in Las Vegas, Nevada.
During the past fifteen years there has been a considerable growth of interest in problems of pattern recognition. Contributions to the blossom of this area have come from many disciplines, including statistics, psychology, linguistics, computer science, biology, taxonomy, switching theory, communication theory, control theory, and operations research. Many different approaches have been proposed and a number of books have been published. Most books published so far deal with the decision-theoretic (or statistical) approach or the syntactic (or linguistic) approach. Since the area of pattern recognition is still far from its maturity, many new research results, both in theory and in applications, are continuously produced. The purpose of this monograph is to provide a concise summary of the major recent developments in pattern recognition. The five main chapters (Chapter 2-6) in this book can be divided into two parts. The first three chapters concern primarily with basic techniques in pattern recognition. They include statistical techniques, clustering analysis and syntactic techniques. The last two chapters deal with applications; namely, picture recognition, and speech recognition and understanding. Each chapter is written by one or two distinguished experts on that subject. The editor has not attempted to impose upon the contributors to this volume a uniform notation and terminol ogy, since such notation and terminology does not as yet exist in pattern recognition.
The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc.
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
'Part-detective story, part-cultural snapshot . . . all bound by Gibson's pin-sharp prose' Arena -------------- THE FIRST NOVEL IN THE BLUE ANT TRILIOGY - READ ZERO HISTORY AND SPOOK COUNTRY FOR MORE Cayce Pollard has a new job. She's been offered a special project: track down the makers of an addictive online film that's lighting up the internet. Hunting the source will take her to Tokyo and Moscow and put her in the sights of Japanese hackers and Russian Mafia. She's up against those who want to control the film, to own it - who figure breaking the law is just another business strategy. The kind of people who relish turning the hunter into the hunted . . . A gripping spy thriller by William Gibson, bestselling author of Neuromancer. Part prophesy, part satire, Pattern Recognition skewers the absurdity of modern life with the lightest and most engaging of touches. Readers of Neal Stephenson, Ray Bradbury and Iain M. Banks won't be able to put this book down. -------------- 'Fast, witty and cleverly politicized' Guardian 'A big novel, full of bold ideas . . . races along like an expert thriller' GQ 'Dangerously hip. Its dialogue and characterization will amaze you. A wonderfully detailed, reckless journey of espionage and lies' USA Today 'A compelling, humane story with a sympathetic heroine searching for meaning and consolation in a post-everything world' Daily Telegraph 'Electric, profound. Gibson's descriptions of Tokyo, Russia and London are surreally spot-on' Financial Times
This book is designed for undergraduate and postgraduate students of Computer Science and Engineering, Information Technology, Electronics and Communication Engineering, and Electrical Engineering. The book comprehensively covers all the important topics in digital image processing and pattern recognition along with the fundamental concepts, mathematical preliminaries and theoretical derivations of significant theorems. The image processing topics include coverage of image formation, digitization, lower level processing, image analysis, image compression, and so on. The topics on pattern recognition include statistical decision making, decision tree learning, artificial neural networks, clustering and others. An application of simulated annealing for edge detection is described in an appendix. The book is profusely illustrated with more than 200 figures and sketches as an added feature. KEY FEATURES: Provides a large number of worked examples to strengthen the grasp of the concepts. Lays considerable emphasis on the algorithms in order to teach students how to write good practical programs for problem solving. Devotes a separate chapter to currently used image format standards. Offers problems at the end of each chapter to help students test their understanding of the fundamentals of the subject.
Describing non-parametric and parametric theoretic classification and the training of discriminant functions, this second edition includes new and expanded sections on neural networks, Fisher's discriminant, wavelet transform, and the method of principal components. It contains discussions on dimensionality reduction and feature selection; novel computer system architectures; proven algorithms for solutions to common roadblocks in data processing; computing models including the Hamming net, the Kohonen self-organizing map, and the Hopfield net; detailed appendices with data sets illustrating key concepts in the text; and more.