Digital Image Denoising in MATLAB

Digital Image Denoising in MATLAB

Author: Chi-Wah Kok

Publisher: John Wiley & Sons

Published: 2024-06-10

Total Pages: 229

ISBN-13: 1119617731

DOWNLOAD EBOOK

Presents a review of image denoising algorithms with practical MATLAB implementation guidance Digital Image Denoising in MATLAB provides a comprehensive treatment of digital image denoising, containing a variety of techniques with applications in high-quality photo enhancement as well as multi-dimensional signal processing problems such as array signal processing, radar signal estimation and detection, and more. Offering systematic guidance on image denoising in theories and in practice through MATLAB, this hands-on guide includes practical examples, chapter summaries, analytical and programming problems, computer simulations, and source codes for all algorithms discussed in the book. The book explains denoising algorithms including linear and nonlinear filtering, Wiener filtering, spatially adaptive and multi-channel processing, transform and wavelet domains processing, singular value decomposition, and various low variance optimization and low rank processing techniques. Throughout the text, the authors address the theory, analysis, and implementation of the denoising algorithms to help readers solve their image processing problems and develop their own solutions. Explains how the quality of an image can be quantified in MATLAB Discusses what constitutes a “naturally looking” image in subjective and analytical terms Presents denoising techniques for a wide range of digital image processing applications Describes the use of denoising as a pre-processing tool for various signal processing applications or big data analysis Requires only a fundamental knowledge of digital signal processing Includes access to a companion website with source codes, exercises, and additional resources Digital Image Denoising in MATLAB is an excellent textbook for undergraduate courses in digital image processing, recognition, and statistical signal processing, and a highly useful reference for researchers and engineers working with digital images, digital video, and other applications requiring denoising techniques.


Digital Image Interpolation in Matlab

Digital Image Interpolation in Matlab

Author: Chi-Wah Kok

Publisher: John Wiley & Sons

Published: 2019-03-19

Total Pages: 336

ISBN-13: 1119119618

DOWNLOAD EBOOK

This book provides a comprehensive study in digital image interpolation with theoretical, analytical and Matlab® implementation. It includes all historically and practically important interpolation algorithms, accompanied with Matlab® source code on a website, which will assist readers to learn and understand the implementation details of each presented interpolation algorithm. Furthermore, sections in fundamental signal processing theories and image quality models are also included. The authors intend for the book to help readers develop a thorough consideration of the design of image interpolation algorithms and applications for their future research in the field of digital image processing. Introduces a wide range of traditional and advanced image interpolation methods concisely and provides thorough treatment of theoretical foundations Discusses in detail the assumptions and limitations of presented algorithms Investigates a variety of interpolation and implementation methods including transform domain, edge-directed, wavelet and scale-space, and fractal based methods Features simulation results for comparative analysis, summaries and computational and analytical exercises at the end of each chapter Digital Image Interpolation in Matlab® is an excellent guide for researchers and engineers working in digital imaging and digital video technologies. Graduate students studying digital image processing will also benefit from this practical reference text.


Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing

Author: Chris Solomon

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 364

ISBN-13: 1119957001

DOWNLOAD EBOOK

This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.


Understanding Digital Image Processing

Understanding Digital Image Processing

Author: Vipin Tyagi

Publisher: CRC Press

Published: 2018-09-13

Total Pages: 368

ISBN-13: 1351342673

DOWNLOAD EBOOK

This book introduces the fundamental concepts of modern digital image processing. It aims to help the students, scientists, and practitioners to understand the concepts through clear explanations, illustrations and examples. The discussion of the general concepts is supplemented with examples from applications and ready-to-use implementations of concepts in MATLAB®. Program code of some important concepts in programming language 'C' is provided. To explain the concepts, MATLAB® functions are used throughout the book. MATLAB® Version 9.3 (R2017b), Image Acquisition Toolbox Version 5.3 (R2017b), Image Processing Toolbox, Version 10.1 (R2017b) have been used to create the book material. Meant for students and practicing engineers, this book provides a clear, comprehensive and up-to-date introduction to Digital Image Processing in a pragmatic manner.


Hyperspectral Image Analysis

Hyperspectral Image Analysis

Author: Saurabh Prasad

Publisher: Springer Nature

Published: 2020-04-27

Total Pages: 464

ISBN-13: 3030386171

DOWNLOAD EBOOK

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.


Advancements in Mechatronics and Intelligent Robotics

Advancements in Mechatronics and Intelligent Robotics

Author: Zhengtao Yu

Publisher: Springer Nature

Published: 2021-07-23

Total Pages: 604

ISBN-13: 9811618437

DOWNLOAD EBOOK

This book gathers selected papers presented at the Fourth International Conference on Mechatronics and Intelligent Robotics (ICMIR 2020), held in Kunming, China, on May 22–24, 2020. The proceedings cover new findings in the following areas of research: mechatronics, intelligent mechatronics, robotics and biomimetics; novel and unconventional mechatronic systems; modeling and control of mechatronic systems; elements, structures and mechanisms of micro- and nano-systems; sensors, wireless sensor networks and multi-sensor data fusion; biomedical and rehabilitation engineering, prosthetics and artificial organs; artificial intelligence (AI), neural networks and fuzzy logic in mechatronics and robotics; industrial automation, process control and networked control systems; telerobotics and human–computer interaction; human–robot interaction; robotics and artificial intelligence; bio-inspired robotics; control algorithms and control systems; design theories and principles; evolutional robotics; field robotics; force sensors, accelerometers and other measuring devices; healthcare robotics; kinematics and dynamics analysis; manufacturing robotics; mathematical and computational methodologies in robotics; medical robotics; parallel robots and manipulators; robotic cognition and emotion; robotic perception and decisions; sensor integration, fusion and perception; and social robotics.


Digital Signal Processing Using MATLAB for Students and Researchers

Digital Signal Processing Using MATLAB for Students and Researchers

Author: John W. Leis

Publisher: John Wiley & Sons

Published: 2011-10-14

Total Pages: 352

ISBN-13: 1118033809

DOWNLOAD EBOOK

Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.


Digital Signal Processing

Digital Signal Processing

Author: K. Deergha Rao

Publisher: Springer

Published: 2018-04-14

Total Pages: 804

ISBN-13: 981108081X

DOWNLOAD EBOOK

The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavelets, enabling readers to easily understand the basics and applications of this powerful mathematical tool for signal and image processing. The final chapter explores DSP processors, which is an area of growing interest for researchers. A valuable resource for undergraduate and graduate students, it can also be used for self-study by researchers, practicing engineers and scientists in electronics, communications, and computer engineering as well as for teaching one- to two-semester courses.