Digital Holography and Wavefront Sensing

Digital Holography and Wavefront Sensing

Author: Ulf Schnars

Publisher: Springer

Published: 2014-09-19

Total Pages: 233

ISBN-13: 3662446936

DOWNLOAD EBOOK

This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated


Contemporary Holography

Contemporary Holography

Author: C. S. Narayanamurthy

Publisher: CRC Press

Published: 2022

Total Pages: 0

ISBN-13: 9780367470975

DOWNLOAD EBOOK

"This book is unique in covering most of developments on optical holography starting from photopolymer recording techniques to CMOS based digital holography. It also covers fundamentals and applications of dynamic holography using photorefractive crystals and many different types of digital holography and its many applications"--


Digital Holography

Digital Holography

Author: Ulf Schnars

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 32

ISBN-13: 9783540219347

DOWNLOAD EBOOK

This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated


New Techniques in Digital Holography

New Techniques in Digital Holography

Author: Pascal Picart

Publisher: John Wiley & Sons

Published: 2015-03-16

Total Pages: 318

ISBN-13: 1848217730

DOWNLOAD EBOOK

A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography


Digital Holographic Microscopy

Digital Holographic Microscopy

Author: Myung K. Kim

Publisher: Springer

Published: 2013-10-24

Total Pages: 240

ISBN-13: 9781461429951

DOWNLOAD EBOOK

Digital holography is an emerging field of new paradigm in general imaging applications. The book presents an introduction to the theoretical and numerical principles and reviews the research and development activities in digital holography, with emphasis on the microscopy techniques and applications. Topics covered include the general theory of diffraction and holography formations, and practical instrumentation and experimentation of digital holography. Various numerical techniques are described that give rise to the unique and versatile capabilities of digital holography. Representative special techniques and applications of digital holography are discussed. The book is intended for researchers interested in developing new techniques and exploring new applications of digital holography.


Digital Holography for MEMS and Microsystem Metrology

Digital Holography for MEMS and Microsystem Metrology

Author: Anand Asundi

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 189

ISBN-13: 1119972787

DOWNLOAD EBOOK

Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the book's relevance and appeal to both researchers and engineers keen to evaluate the potential of digital holography for integration into their existing machines and processes. Addresses particle characterization where digital holography has proven capability for dynamic measurement of particles in 3D for sizing and shape characterization, with applications in microfluidics as well as crystallization and aerosol detection studies. Discusses digital reflection holography, digital transmission holography, digital in-line holography, and digital holographic tomography and applications. Covers other applications including micro-optical and diffractive optical systems and the testing of these components, and bio-imaging.


Introduction to Modern Digital Holography

Introduction to Modern Digital Holography

Author: Ting-Chung Poon

Publisher: Cambridge University Press

Published: 2014-01-23

Total Pages: 227

ISBN-13: 1107729114

DOWNLOAD EBOOK

Get up to speed with digital holography with this concise and straightforward introduction to modern techniques and conventions. Building up from the basic principles of optics, this book describes key techniques in digital holography, such as phase-shifting holography, low-coherence holography, diffraction tomographic holography and optical scanning holography, discussing their practical applications, and accompanied by all the theory necessary to understand the underlying principles at work. A further chapter covers advanced techniques for producing computer-generated holograms. Extensive Matlab code is integrated with the text throughout and available for download online, illustrating both theoretical results and practical considerations such as aliasing, zero padding and sampling. Accompanied by end-of-chapter problems and an online solutions manual for instructors, this is an indispensable resource for students, researchers and engineers in the fields of optical image processing and digital holography.


Wavefront Sensing the 3D Image Reconstruction in Deep Turbulence

Wavefront Sensing the 3D Image Reconstruction in Deep Turbulence

Author: Matthais Thomas Banet

Publisher:

Published: 2023

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

"The work presented in this dissertation explores the use of several unconventional imaging and wavefront sensing modalities in the presence of distributed-volume, or "deep," atmospheric turbulence. This dissertation focuses on the propagation of coherent light from laser sources through the atmosphere, and imaging/wavefront sensing at optical and infrared laser wavelengths. Such wavelengths are negatively affected by deep turbulence. We use a coherent detection method known as digital holography to (1) coherently image distant objects and (2) to sense and correct for aberrations due to turbulence along the propagation path. We showed that compensated-beacon adaptive optics can be used with a digital holographic wavefront sensor or a Shack-Hartmann wavefront sensor to improve the performance of beam projection to distant objects over uncompensated beacon adaptive optics. We saw performance gains of 17% for the Shack-Hartmann wavefront sensor and 26% for the digital holographic wavefront sensor on average for several turbulence scenarios. We explored multi-wavelength 3D imaging with digital holography along with two speckle decorrelation mechanisms that degrade 3D imaging performance in a theoretical framework. Upon establishing this framework, we simulated multi-wavelength 3D imaging of distant objects through deep turbulence and reconstructed the imagery using sharpness metric maximization for 3D data. The results showed that the reconstruction process was more successful if using more corrective phase screens along the digital propagation path. Additionally we showed that sharpness metric maximization suffered in performance in the presence of scintillated illumination patterns, also known as uplink scintillation. Finally we explored motion compensated, multi-wavelength 3D imaging with digital holography and a pilot tone in theory. Our theoretical framework predicted that one would see increased noise in range images, known as range chatter, over highly-sloped object facets relative to the optical axis, and simulations bore this out explicitly. We showed that range chatter increases as a function of object facet slope, optical illumination bandwidth, optical frequency spacing, and turbulence. Going further we used sharpness metric maximization to improve the range chatter that was brought about by turbulence."--Pages xiv-xv.


Predictive Dynamic Digital Holography

Predictive Dynamic Digital Holography

Author: Sennan David Sulaiman

Publisher:

Published: 2017

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Digital holography has received recent attention for many imaging and sensing applications, including imaging through turbulent and turbid media, adaptive optics, three-dimensional projective display technology and optical tweezing. It holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high-energy laser systems and high-speed imaging for target tracking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing algorithms to optimize sharpness criteria. This research demonstrates real-time methods for digital holography based on approaches for optimal and adaptive identification, prediction, and control of optical wavefronts. The methods presented integrate minimum-variance wavefront prediction into dynamic digital holography schemes to accelerate the wavefront correction and image sharpening algorithms. Further gains in computational efficiency are demonstrated in this work with a variant of localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. This "subspace correction" method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.