Differential Privacy for Dynamic Data

Differential Privacy for Dynamic Data

Author: Jerome Le Ny

Publisher: Springer Nature

Published: 2020-03-24

Total Pages: 118

ISBN-13: 3030410390

DOWNLOAD EBOOK

This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.


The Algorithmic Foundations of Differential Privacy

The Algorithmic Foundations of Differential Privacy

Author: Cynthia Dwork

Publisher:

Published: 2014

Total Pages: 286

ISBN-13: 9781601988188

DOWNLOAD EBOOK

The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.


Dynamic Data Analysis

Dynamic Data Analysis

Author: James Ramsay

Publisher: Springer

Published: 2017-06-27

Total Pages: 242

ISBN-13: 1493971905

DOWNLOAD EBOOK

This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.


Handbook on Using Administrative Data for Research and Evidence-based Policy

Handbook on Using Administrative Data for Research and Evidence-based Policy

Author: Shawn Cole

Publisher: Abdul Latif Jameel Poverty Action Lab

Published: 2021

Total Pages: 618

ISBN-13: 9781736021606

DOWNLOAD EBOOK

This Handbook intends to inform Data Providers and researchers on how to provide privacy-protected access to, handle, and analyze administrative data, and to link them with existing resources, such as a database of data use agreements (DUA) and templates. Available publicly, the Handbook will provide guidance on data access requirements and procedures, data privacy, data security, property rights, regulations for public data use, data architecture, data use and storage, cost structure and recovery, ethics and privacy-protection, making data accessible for research, and dissemination for restricted access use. The knowledge base will serve as a resource for all researchers looking to work with administrative data and for Data Providers looking to make such data available.


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems

Author: Erik P. Blasch

Publisher: Springer Nature

Published: 2022-05-11

Total Pages: 753

ISBN-13: 3030745686

DOWNLOAD EBOOK

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination. The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms. Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions. In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide. Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential. Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems

Author: Erik Blasch

Publisher: Springer

Published: 2018-11-13

Total Pages: 734

ISBN-13: 3319955047

DOWNLOAD EBOOK

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in10 application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: Earth and Space Data Assimilation Aircraft Systems Processing Structures Health Monitoring Biological Data Assessment Object and Activity Tracking Embedded Control and Coordination Energy-Aware Optimization Image and Video Computing Security and Policy Coding Systems Design The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination.


Linking Sensitive Data

Linking Sensitive Data

Author: Peter Christen

Publisher:

Published: 2020

Total Pages: 476

ISBN-13: 3030597067

DOWNLOAD EBOOK

This book provides modern technical answers to the legal requirements of pseudonymisation as recommended by privacy legislation. It covers topics such as modern regulatory frameworks for sharing and linking sensitive information, concepts and algorithms for privacy-preserving record linkage and their computational aspects, practical considerations such as dealing with dirty and missing data, as well as privacy, risk, and performance assessment measures. Existing techniques for privacy-preserving record linkage are evaluated empirically and real-world application examples that scale to population sizes are described. The book also includes pointers to freely available software tools, benchmark data sets, and tools to generate synthetic data that can be used to test and evaluate linkage techniques. This book consists of fourteen chapters grouped into four parts, and two appendices. The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases. The appendices provide pointers and describe freely available, open-source software systems that allow the linkage of sensitive data, and provide further details about the evaluations presented. A companion Web site at https://dmm.anu.edu.au/lsdbook2020 provides additional material and Python programs used in the book. This book is mainly written for applied scientists, researchers, and advanced practitioners in governments, industry, and universities who are concerned with developing, implementing, and deploying systems and tools to share sensitive information in administrative, commercial, or medical databases. The Book describes how linkage methods work and how to evaluate their performance. It covers all the major concepts and methods and also discusses practical matters such as computational efficiency, which are critical if the methods are to be used in practice - and it does all this in a highly accessible way! David J. Hand, Imperial College, London.


Privacy-Preserving Data Publishing

Privacy-Preserving Data Publishing

Author: Bee-Chung Chen

Publisher: Now Publishers Inc

Published: 2009-10-14

Total Pages: 183

ISBN-13: 1601982763

DOWNLOAD EBOOK

This book is dedicated to those who have something to hide. It is a book about "privacy preserving data publishing" -- the art of publishing sensitive personal data, collected from a group of individuals, in a form that does not violate their privacy. This problem has numerous and diverse areas of application, including releasing Census data, search logs, medical records, and interactions on a social network. The purpose of this book is to provide a detailed overview of the current state of the art as well as open challenges, focusing particular attention on four key themes: RIGOROUS PRIVACY POLICIES Repeated and highly-publicized attacks on published data have demonstrated that simplistic approaches to data publishing do not work. Significant recent advances have exposed the shortcomings of naive (and not-so-naive) techniques. They have also led to the development of mathematically rigorous definitions of privacy that publishing techniques must satisfy; METRICS FOR DATA UTILITY While it is necessary to enforce stringent privacy policies, it is equally important to ensure that the published version of the data is useful for its intended purpose. The authors provide an overview of diverse approaches to measuring data utility; ENFORCEMENT MECHANISMS This book describes in detail various key data publishing mechanisms that guarantee privacy and utility; EMERGING APPLICATIONS The problem of privacy-preserving data publishing arises in diverse application domains with unique privacy and utility requirements. The authors elaborate on the merits and limitations of existing solutions, based on which we expect to see many advances in years to come.


The Ethical Algorithm

The Ethical Algorithm

Author: Michael Kearns

Publisher:

Published: 2020

Total Pages: 229

ISBN-13: 0190948205

DOWNLOAD EBOOK

Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.


Analytical Methods for Dynamic Modelers

Analytical Methods for Dynamic Modelers

Author: Hazhir Rahmandad

Publisher: MIT Press

Published: 2015-11-27

Total Pages: 443

ISBN-13: 0262331438

DOWNLOAD EBOOK

A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel