Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics

Author: Yves Talpaert

Publisher: CRC Press

Published: 2000-09-12

Total Pages: 480

ISBN-13: 9780824703851

DOWNLOAD EBOOK

An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.


Geometry and Complexity Theory

Geometry and Complexity Theory

Author: J. M. Landsberg

Publisher: Cambridge University Press

Published: 2017-09-28

Total Pages: 353

ISBN-13: 110819141X

DOWNLOAD EBOOK

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.


An Introduction to Differential Geometry with Applications to Elasticity

An Introduction to Differential Geometry with Applications to Elasticity

Author: Philippe G. Ciarlet

Publisher: Springer Science & Business Media

Published: 2006-06-28

Total Pages: 212

ISBN-13: 1402042485

DOWNLOAD EBOOK

curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].


Differential Geometry, Calculus of Variations, and Their Applications

Differential Geometry, Calculus of Variations, and Their Applications

Author: George M. Rassias

Publisher: CRC Press

Published: 1985-10-01

Total Pages: 550

ISBN-13: 9780824772673

DOWNLOAD EBOOK

This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.


Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics

Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics

Author: Troy L Story

Publisher: iUniverse

Published: 2005

Total Pages: 165

ISBN-13: 0595339212

DOWNLOAD EBOOK

Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.


Information Geometry and Its Applications

Information Geometry and Its Applications

Author: Shun-ichi Amari

Publisher: Springer

Published: 2016-02-02

Total Pages: 378

ISBN-13: 4431559787

DOWNLOAD EBOOK

This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.


Tensor and Vector Analysis

Tensor and Vector Analysis

Author: C. E. Springer

Publisher: Courier Corporation

Published: 2013-09-26

Total Pages: 258

ISBN-13: 048632091X

DOWNLOAD EBOOK

Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.


Introduction to Numerical Linear Algebra and Optimisation

Introduction to Numerical Linear Algebra and Optimisation

Author: Philippe G. Ciarlet

Publisher: Cambridge University Press

Published: 1989-08-25

Total Pages: 456

ISBN-13: 9780521339841

DOWNLOAD EBOOK

The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.