Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics

Author: Elina Shishkina

Publisher: Academic Press

Published: 2020-08-19

Total Pages: 592

ISBN-13: 0128197811

DOWNLOAD EBOOK

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. Presents the universal transmutation method as the most powerful for solving many problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods Combines mathematical rigor with an illuminating exposition full of historical notes and fascinating details Enables researchers, lecturers and students to find material under the single "roof"


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: Arthur Godon Webster

Publisher: Courier Dover Publications

Published: 2016-06-20

Total Pages: 465

ISBN-13: 0486805158

DOWNLOAD EBOOK

A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

Published: 1964-01-01

Total Pages: 452

ISBN-13: 9780486659640

DOWNLOAD EBOOK

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Author: Stefan Bergman

Publisher: Courier Corporation

Published: 2005-09-01

Total Pages: 450

ISBN-13: 0486445534

DOWNLOAD EBOOK

This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.


Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 434

ISBN-13: 048613217X

DOWNLOAD EBOOK

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.


Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics

Author: Isaak Rubinstein

Publisher: Cambridge University Press

Published: 1998-04-28

Total Pages: 704

ISBN-13: 9780521558464

DOWNLOAD EBOOK

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.


Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial

Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial

Author: Peter Kuchment

Publisher: American Mathematical Soc.

Published: 2019-07-22

Total Pages: 322

ISBN-13: 147043783X

DOWNLOAD EBOOK

This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in ordinary and partial differential equations, fluid dynamics, and various applications.


Singular Integral Equations

Singular Integral Equations

Author: N. I. Muskhelishvili

Publisher: Courier Corporation

Published: 2013-02-19

Total Pages: 466

ISBN-13: 0486145069

DOWNLOAD EBOOK

DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div


Ordinary Differential Equations and Applications

Ordinary Differential Equations and Applications

Author: W S Weiglhofer

Publisher: Elsevier

Published: 1999-06-01

Total Pages: 228

ISBN-13: 0857099736

DOWNLOAD EBOOK

This introductory text presents ordinary differential equations with a modern approach to mathematical modelling in a one semester module of 20–25 lectures. - Presents ordinary differential equations with a modern approach to mathematical modelling - Discusses linear differential equations of second order, miscellaneous solution techniques, oscillatory motion and laplace transform, among other topics - Includes self-study projects and extended tutorial solutions