Differential Algebra & Algebraic Groups
Author:
Publisher: Academic Press
Published: 1973-06-15
Total Pages: 469
ISBN-13: 0080873693
DOWNLOAD EBOOKDifferential Algebra & Algebraic Groups
Read and Download eBook Full
Author:
Publisher: Academic Press
Published: 1973-06-15
Total Pages: 469
ISBN-13: 0080873693
DOWNLOAD EBOOKDifferential Algebra & Algebraic Groups
Author:
Publisher: Academic Press
Published: 1985-01-25
Total Pages: 292
ISBN-13: 0080874339
DOWNLOAD EBOOKDifferential Algebraic Groups
Author: Alexandru Buium
Publisher: Springer
Published: 1992
Total Pages: 170
ISBN-13:
DOWNLOAD EBOOKDifferential algebraic groups were introduced by P. Cassidy and E. Kolchin and are, roughly speaking, groups defined by algebraic differential equations in the same way as algebraic groups are groups defined by algebraic equations. The aim of the book is two-fold: 1) the provide an algebraic geometer's introduction to differential algebraic groups and 2) to provide a structure and classification theory for the finite dimensional ones. The main idea of the approach is to relate this topic to the study of: a) deformations of (not necessarily linear) algebraic groups and b) deformations of their automorphisms. The reader is assumed to possesssome standard knowledge of algebraic geometry but no familiarity with Kolchin's work is necessary. The book is both a research monograph and an introduction to a new topic and thus will be of interest to a wide audience ranging from researchers to graduate students.
Author: Teresa Crespo
Publisher: American Mathematical Soc.
Published: 2011
Total Pages: 242
ISBN-13: 082185318X
DOWNLOAD EBOOKDifferential Galois theory has seen intense research activity during the last decades in several directions: elaboration of more general theories, computational aspects, model theoretic approaches, applications to classical and quantum mechanics as well as to other mathematical areas such as number theory. This book intends to introduce the reader to this subject by presenting Picard-Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained way. The needed prerequisites from algebraic geometry and algebraic groups are contained in the first two parts of the book. The third part includes Picard-Vessiot extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quadratures, Fuchsian equations, monodromy group and Kovacic's algorithm. Over one hundred exercises will help to assimilate the concepts and to introduce the reader to some topics beyond the scope of this book. This book is suitable for a graduate course in differential Galois theory. The last chapter contains several suggestions for further reading encouraging the reader to enter more deeply into different topics of differential Galois theory or related fields.
Author: Marius van der Put
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 446
ISBN-13: 3642557503
DOWNLOAD EBOOKFrom the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Author: Raoul Bott
Publisher: Springer Science & Business Media
Published: 2013-04-17
Total Pages: 319
ISBN-13: 1475739516
DOWNLOAD EBOOKDeveloped from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Author: Alexandru Buium
Publisher: Springer
Published: 2006-11-15
Total Pages: 160
ISBN-13: 3540467645
DOWNLOAD EBOOKDifferential algebraic groups were introduced by P. Cassidy and E. Kolchin and are, roughly speaking, groups defined by algebraic differential equations in the same way as algebraic groups are groups defined by algebraic equations. The aim of the book is two-fold: 1) the provide an algebraic geometer's introduction to differential algebraic groups and 2) to provide a structure and classification theory for the finite dimensional ones. The main idea of the approach is to relate this topic to the study of: a) deformations of (not necessarily linear) algebraic groups and b) deformations of their automorphisms. The reader is assumed to possesssome standard knowledge of algebraic geometry but no familiarity with Kolchin's work is necessary. The book is both a research monograph and an introduction to a new topic and thus will be of interest to a wide audience ranging from researchers to graduate students.
Author: Matthias Aschenbrenner
Publisher: Princeton University Press
Published: 2017-06-06
Total Pages: 873
ISBN-13: 0691175438
DOWNLOAD EBOOKAsymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Author: Peter J. Olver
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 524
ISBN-13: 1468402749
DOWNLOAD EBOOKThis book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Author: J. S. Milne
Publisher: Cambridge University Press
Published: 2017-09-21
Total Pages: 665
ISBN-13: 1107167485
DOWNLOAD EBOOKComprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.