Ferroelectrics, Vol. 1

Ferroelectrics, Vol. 1

Author: V. Alexander Stefan

Publisher: Stefan University Press

Published: 2002-08-16

Total Pages: 218

ISBN-13: 1889545287

DOWNLOAD EBOOK

CONTENTS Preface, XI List of Contributors, XIII Part I. REPORTS. Materials Parameters Determining the Performance of 3-3 Piezocomposites C.R. Bowen, A. Perry, R. Stevens, and S. Mahon.............................................. 3 Dielectric Permittivity and Hysteresis of PZT Aerogels Stefan Geis, Jochen Fricke................................................................................ 23 Superfine Anomalies of the Cubic-Tetragonal Transition in the Perovskite-Type Ferroelectrics Detected by “mk-stabilized cell” Akira Kojima, Yukio Yoshimura, Hiroshi Iwasaki, and Ken-ichi Tozaki.......................................................................................... 33 NMR Study on m3h(seo4)2 (m: k, rb) Yasumitsu Matsuo, Keisuke Takahashi, and Seiichiro Ikehata............................. 51 Photovoltaic Effect in Pb(Zr,Ti)O3 (PZT)-Based Ceramics and Development for Photostrictor Application Kazuhiro Nonaka, Morito Akiyama, Chao-Nan Xu, Tsuyoshi Hagio, and Akira Takase.................................................................... 65 Novel Electronic Phase Transition in ii-vi Ferroelectric Semiconductor znO A. Onodera and H. Satoh................................................................................. 93 Brillouin Scattering Study of Structural Phase Transition in the kno3 Crystal Yasunari Takagi............................................................................................... 113 New Technologies for Future FeRAMs K. Uchiyama, M. Kazumura, Y. Shimada, T. Otsuki, N. Solayappan, V. Joshi, and C.A. Paz de Araujo............................................... 125 NANOCRYSTALLINE PEROVSKITE FILMS: FERROELECTRICS AND RELAXORS C. Ziebert, J.K. Krüger, H. Schmitt, A. Sternberg K.-H. Ehses, M. Marx................................................................................... 135 Part II. BRIEF REPORTS Studies of Ferroelectric Thin Film and Film-Based Device Processes via In Situ Analytic Techniques O. Auciello, S.K. Streiffer, G.B. Stephenson, J.A. Eastman, G. Bai, A.R. Krauss, J. Im, A.M. Dhote, C. Thompson, E.A. Irene, Y. Gao, A.H. Muller, M.J. Bedzyk, A. Kazimirov, D. Marasco, V.P. Dravid, A. Gruverman, S. Aggarwal, R. Ramesh, S.-H. Kim, A.I. Kingon, and C.B. Eom.................................................................................................. 155 The Spherical Random Bond – Random Field Model of Relaxor Ferroelectrics: Theory and Experiments R. Blinc, R. Pirc, B. Zalar, and A. Gregorovic.................................................... 159 Stabilization of Ferroelectricity in Quantum Paraelectrics by Isotopic Substitution A. Bussmann-Holder, H. Buttner, and A.R. Bishop............................................ 165 New Understanding of the Phases Transition Mechanism of Hydrogen-Bonded Ferroelectrics A. Bussmann-Holder, Naresh Dalal, Riqiang Fu, and Ricardo Migoni................... 167 Two Dimensional Ferroelectrics V.M. Fridkin, L.M. Blinov, S.P. Palto, S.G. Yudin, S. Ducharme, P.A. Dowben, and A.V. Bune.......................................................................... 169 Ferroelastic Twinning in Some Extremely Plastic Crystals Lyubov Kirpichnikova....................................................................................... 171 Investigation of the Anisotropy of srbi2ta2o9 and srbi2nb2o9 Through Epitaxial Growth J. Lettieri, M.A. Zurbuchen, Y. Jia, D.G. Schlom, S.K. Streiffer, and M.E. Hawley............................................................................................. 173 New Ideas in Relaxor Theory R.F. Mamin..................................................................................................... 179 Evaluation of Ferroelectric Domains in Lead Zirconate Titanate Ceramics by Poling Fields Toshio Ogawa.................................................................................................. 181 Metal-Organic Chemical Vapor Deposited Ceramic Thin Films for Future Memory Applications M. Schumacher, J. Lindner, F. Schienle, D. Burgess, P. Strzyzewski, M. Dauelsberg, E. Merz, and H. Juergensen............................... 185 Dynamic and Static Aspects of the Antiferroelectric Phase Transition in rb3h1-xdx(so4)2 Crystals: An 87rb-nmr Study Andreas Titze and Roland Boehmer.................................................................. 187 Key Word Index………………………………………………………………………. 189 Contents of FERROELECTRICS.Vol.2. Frontier in Science and Technology Series. List of Titles. FSRC BOOKS of ABSTRACTS in Science and Technology Conference Series. List of Titles. F S R C. A Brief Info.


Diamond for Quantum Applications Part 1

Diamond for Quantum Applications Part 1

Author:

Publisher: Academic Press

Published: 2020-06-16

Total Pages: 318

ISBN-13: 0128202416

DOWNLOAD EBOOK

Diamond for Quantum Applications Part 1, Volume 103, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Semiconductors and Semimetals series Updated release includes the latest information on the use of diamonds for quantum applications


My Passion

My Passion

Author: V. Alexander Stefan

Publisher: Stefan University Press

Published: 2008

Total Pages: 409

ISBN-13: 1889545937

DOWNLOAD EBOOK


The Diamond

The Diamond

Author: V. Alexander STEFAN

Publisher: Stefan University Press

Published: 2002

Total Pages: 42

ISBN-13: 1889545325

DOWNLOAD EBOOK


The Open World MANIFESTO

The Open World MANIFESTO

Author: V. Alexander STEFAN

Publisher: Stefan University Press

Published: 2009-12-21

Total Pages: 1058

ISBN-13:

DOWNLOAD EBOOK

V. Alexander STEFAN The Open World MANIFESTO Novus Ordo Scientifico-Technologicus. QUALB Coeptis New Order Scientific-Technological. QUALB Cooperates CONTENTS BOOK 1 SCIENCE AND TECHNOLOGY: A New Earth and a New Atlantis Universe: Our Very Own 393 BOOK 2 HUMAN BEINGS; OUR ID-NUMBERS; OUR CONSCIOUSNESS of TIME 558 BOOK 3 FREEDOM, DEMOCRACY, and PLURALISM: The Dawning of the Terrestrial Civilization 618 BOOK 4 THE AGE OF EDUCATION: CREATIVE EDUCATION versus DRILL EDUCATION 699 BOOK 5 HUMAN BEING and QUALB the GIVER, the SUPREME BEING: Science/Technology and Religion 754


Diamond: Electronic Properties and Applications

Diamond: Electronic Properties and Applications

Author: Lawrence S. Pan

Publisher: Springer Science & Business Media

Published: 1994-12-31

Total Pages: 498

ISBN-13: 9780792395249

DOWNLOAD EBOOK

The use of diamond for electronic applications is not a new idea. As early as the 1920's diamonds were considered for their use as photoconductive detectors. However limitations in size and control of properties naturally limited the use of diamond to a few specialty applications. With the development of diamond synthesis from the vapor phase has come a more serious interest in developing diamond-based electronic devices. A unique combination of extreme properties makes diamond partiCularly well suited for high speed, high power, and high temperature applications. Vapor phase deposition of diamond allows large area films to be deposited, whose properties can potentially be controlled. Since the process of diamond synthesis was first realized, great progress have been made in understanding the issues important for growing diamond and fabricating electronic devices. The quality of both intrinsic and doped diamond has improved greatly to the point that viable applications are being developed. Our understanding of the properties and limitations has also improved greatly. While a number of excellent references review the general properties of diamond, this volume summarizes the great deal of literature related only to electronic properties and applications of diamond. We concentrate only on diamond; related materials such as diamond-like carbon (DLC) and other wide bandgap semiconductors are not treated here. In the first chapter Profs. C. Y. Fong and B. M. Klein discuss the band structure of single-crystal diamond and its relation to electronic properties.