The Plant Cell Cycle

The Plant Cell Cycle

Author: Dirk Inzé

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 240

ISBN-13: 9401009368

DOWNLOAD EBOOK

In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.


Genetic Engineering of Plants

Genetic Engineering of Plants

Author: National Research Council

Publisher: National Academies Press

Published: 1984-02-01

Total Pages: 97

ISBN-13: 0309034345

DOWNLOAD EBOOK

"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."


Developmental Regulation of Plant Gene Expression

Developmental Regulation of Plant Gene Expression

Author: Don Grierson

Publisher: Springer

Published: 2013-03-12

Total Pages: 238

ISBN-13: 9401130523

DOWNLOAD EBOOK

The intricacies of plant growth and development present a fascinating intellectual challenge, and yet our understanding of the subject has increased relatively slowly, despite the application of many different experimental approaches. Now, however, the introduction of molecular methods, coupled with genetic transformation technology, has provided a change in pace, and fundamental advances are occurring rapidly. This volume, the second in our Plant Biotechnology series, shows how we are beginning to understand the molecular basis of plant growth and development, and are thus moving from the descriptive to the predictive stage. The ability, discussed in chapter one, to generate a fivefold change in plant height by overexpression of a single gene for the photoreceptor phytochrome heralds not only a new phase in plant photobiology but also highlights the close relationship between fundamental knowledge and commercial application. Other chapters review progress in our understanding of the molecular basis of hormone action and processes such as tuber development, seed protein synthesis and deposition, fruit ripening, and self-recognition during pollination. The successful uses of antisense genes to alter the colour and pattern of flowers and to change the enzymic composition of ripening fruit are also discussed, together with identification and down regulation of a gene involved in ethylene synthesis by antisense technology. Opportunities are considered for altering the composition and quality of harvested plant organs and for using plants to synthesise novel products.


Plant Developmental Biology

Plant Developmental Biology

Author: Lars Hennig

Publisher: Humana

Published: 2016-08-23

Total Pages: 448

ISBN-13: 9781493957347

DOWNLOAD EBOOK

Plants come in myriads of shapes and colors, and the beauty of plants has fascinated mankind for thousands of years. Long before Mendel discovered the laws of heritab- ity and Darwin developed his theory on evolution, the affection for ornamental plants led people to select alleles that establish novel plant forms. Today, plant developmental biology tries to discover the mechanisms that control the establishment of specialized cell types, tissues, and organs from the fertilized egg during a plant’s life. Although the underlying processes of cell proliferation and differentiation are similar in plants and a- mals, plants are different because their development is usually open, and its outcome is not the faithful repetition of a general plan but is strongly in?uenced by environm- tal conditions. In the last few decades, plant developmental biology has pinpointed a large number of developmental regulators and their interactions and the mechanisms that govern plant development start to emerge. In part, this progress was enabled by the advance of powerful molecular tools for a few model species, most importantly Arabidopsis. This volume of the Methods in Molecular Biology series provides a collection of protocols for many of the common experimental approaches in plant developmental bi- ogy. All chapters are written in the same format as that used in the Methods in Molecular TM Biology series. Each chapter opens with a description of the basic theory behind the method being described.


Genome Stability

Genome Stability

Author: Igor Kovalchuk

Publisher: Academic Press

Published: 2021-07-17

Total Pages: 762

ISBN-13: 0323856802

DOWNLOAD EBOOK

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair


Plant Development

Plant Development

Author: Robert Lyndon

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 303

ISBN-13: 9401179794

DOWNLOAD EBOOK

The study of plant development in recent years has often been concerned with the effects of the environment and the possible involvement of growth substances. The prevalent belief that plant growth substances are crucial to plant development has tended to obscure rather than to clarify the underlying cellular mechanisms of development. The aim in this book is to try to focus on what is currently known, and what needs to be known, in order to explain plant development in terms that allow further experimentation at the cellular and molecular levels. We need to know where and at what level in the cell or organ the critical processes controlling development occur. Then, we will be better able to under stand how development is controlled by the genes, whether directly by the continual production of new gene transeripts or more indirectly by the genes merely defining self-regulating systems that then function autonomously. This book is not a survey of the whole of plant development but is meant to concentrate on the possible component cellular and molecular processes involved. Consequently, a basic knowledge of plant structure is assumed. The facts of plant morphogenesis can be obtained from the books listed in the General Reading seetion at the end of Chapter 1. Although references are not cited specifically in the text, the key references for each section are denoted by superscript numbers and listed in the Notes section at the end of each chapter.


Plant Genes, Genomes and Genetics

Plant Genes, Genomes and Genetics

Author: Erich Grotewold

Publisher: John Wiley & Sons

Published: 2015-05-26

Total Pages: 259

ISBN-13: 1119998875

DOWNLOAD EBOOK

Plant Genes, Genomes and Genetics provides a comprehensive treatment of all aspects of plant gene expression. Unique in explaining the subject from a plant perspective, it highlights the importance of key processes, many first discovered in plants, that impact how plants develop and interact with the environment. This text covers topics ranging from plant genome structure and the key control points in how genes are expressed, to the mechanisms by which proteins are generated and how their activities are controlled and altered by posttranslational modifications. Written by a highly respected team of specialists in plant biology with extensive experience in teaching at undergraduate and graduate level, this textbook will be invaluable for students and instructors alike. Plant Genes, Genomes and Genetics also includes: specific examples that highlight when and how plants operate differently from other organisms special sections that provide in-depth discussions of particular issues end-of-chapter problems to help students recapitulate the main concepts rich, full-colour illustrations and diagrams clearly showing important processes in plant gene expression a companion website with PowerPoint slides, downloadable figures, and answers to the questions posed in the book Aimed at upper level undergraduates and graduate students in plant biology, this text is equally suited for advanced agronomy and crop science students inclined to understand molecular aspects of organismal phenomena. It is also an invaluable starting point for professionals entering the field of plant biology.


Nuclear pre-mRNA Processing in Plants

Nuclear pre-mRNA Processing in Plants

Author: A. S. N. Reddy

Publisher: Springer Science & Business Media

Published: 2008-04-16

Total Pages: 323

ISBN-13: 3540767762

DOWNLOAD EBOOK

During the last few years, tremendous progress has been made in understanding various aspects of pre-mRNA processing. This book, with contributions from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing in plants. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology.


Biochemistry of Fruit Ripening

Biochemistry of Fruit Ripening

Author: G.B. Seymour

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 461

ISBN-13: 9401115842

DOWNLOAD EBOOK

It is over 20 years since the publication of A.c. Hulme's two volume text on The Biochemistry of Fruits and thei.r Products. Whilst the bulk of the information contained in that text is still relevant it is true to say that our understanding of the biochemical and genetic mech