Evolution of Silicon Sensor Technology in Particle Physics

Evolution of Silicon Sensor Technology in Particle Physics

Author: Frank Hartmann

Publisher: Springer Science & Business Media

Published: 2008-12-01

Total Pages: 211

ISBN-13: 3540250948

DOWNLOAD EBOOK

In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors.


Techniques for Nuclear and Particle Physics Experiments

Techniques for Nuclear and Particle Physics Experiments

Author: William R. Leo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 385

ISBN-13: 3642579205

DOWNLOAD EBOOK

A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Christian W. Fabjan

Publisher: Springer Nature

Published: 2020

Total Pages: 1083

ISBN-13: 3030353184

DOWNLOAD EBOOK

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Evolution of Silicon Sensor Technology in Particle Physics

Evolution of Silicon Sensor Technology in Particle Physics

Author: Frank Hartmann

Publisher: Springer

Published: 2017-11-06

Total Pages: 386

ISBN-13: 331964436X

DOWNLOAD EBOOK

This informative monograph describes the technological evolution of silicon detectors and their impact on high energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations. The new edition gives a detailed overview of the silicon sensor technology used at the LHC, from basic principles to actual implementation to lessons learned.


An Introduction to Ultra-Fast Silicon Detectors

An Introduction to Ultra-Fast Silicon Detectors

Author: Marco Ferrero

Publisher: CRC Press

Published: 2021-07-07

Total Pages: 196

ISBN-13: 1000415090

DOWNLOAD EBOOK

The book describes the development of innovative silicon sensors known as ultra-fast silicon detectors for use in the space-time tracking of charge particles. The first comprehensive collection of information on the topic, otherwise currently scattered in existing literature, this book presents a comprehensive introduction to the development of ultra-fast silicon detectors with the latest technology and applications from the field. It will be an ideal reference for graduate and postgraduates studying high energy and particle physics and engineering, in addition to researchers in the area. Key features Authored by a team of subject area specialists, whose research group first invented ultra-fast silicon detectors The first book on the topic to explain the details of the design of silicon sensors for 4-dimensional tracking Presents state-of-the-art results, and prospects for further performance evolutions The Open Access version of this book, available at www.taylorfrancis.com/e/9780367646295 , has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.


Semiconductor Detector Systems

Semiconductor Detector Systems

Author: Helmuth Spieler

Publisher: OUP Oxford

Published: 2005-08-25

Total Pages: 513

ISBN-13: 0191523658

DOWNLOAD EBOOK

Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.


Particle Detectors

Particle Detectors

Author: Hermann Kolanoski

Publisher: Oxford University Press

Published: 2020-06-30

Total Pages: 949

ISBN-13: 0191899232

DOWNLOAD EBOOK

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.


Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017

Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017

Author: Zhen-An Liu

Publisher: Springer

Published: 2018-08-07

Total Pages: 445

ISBN-13: 9811313164

DOWNLOAD EBOOK

These two volumes present the proceedings of the International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP2017), which was held in Beijing, China from 22 to 26 May 2017. Gathering selected articles on the basis of their quality and originality, it highlights the latest developments and research trends in detectors and instrumentation for all branches of particle physics, particle astrophysics and closely related fields. This is the second volume, and focuses on the main themes Astrophysics and space instrumentation, Front-end electronics and fast data transmission, Trigger and data acquisition systems, Machine detectors, Interfaces and beam instrumentation, Backend readout structures and embedded systems, Medical imaging, and Security & other applications. The TIPP2017 is the fourth in a series of international conferences on detectors and instrumentation, held under the auspices of the International Union of Pure and Applied Physics (IUPAP). The event brings together experts from the scientific and industrial communities to discuss their current efforts and plan for the future. The conference’s aim is to provide a stimulating atmosphere for scientists and engineers from around the world.


Particle Detectors

Particle Detectors

Author: Hermann Kolanoski

Publisher: Oxford University Press, USA

Published: 2020

Total Pages: 949

ISBN-13: 0198858361

DOWNLOAD EBOOK

The book describes the fundamentals of particle detectors in their different forms as well as their applications, presenting the abundant material as clearly as possible and as deeply as needed for a thorough understanding. The target group for the book are both, students who want to get an introduction or wish to deepen their knowledge on the subject as well as lecturers and researchers who intend to extent their expertise. The book is also suited as a preparation for instrumental work in nuclear, particle and astroparticle physics and in many other fields (addressed in chapter 2). The detection of elementary particles, nuclei and high-energetic electromagnetic radiation, in this book commonly designated as 'particles', proceeds through interactions of the particles with matter. A detector records signals originating from the interactions occurring in or near the detector and (in general) feeds them into an electronic data acquisition system. The book describes the various steps in this process, beginning with the relevant interactions with matter, then proceeding to their exploitation for different detector types like tracking detectors, detectors for particle identification, detectors for energy measurements, detectors in astroparticle experiments, and ending with a discussion of signal processing and data acquisition. Besides the introductory and overview chapters (chapters 1 and 2), the book is divided into five subject areas: - fundamentals (chapters 3 to 5), - detection of tracks of charged particles (chapters 6 to 9), - phenomena and methods mainly applied for particle identification (chapters 10 to 14), - energy measurement (accelerator and non-accelerator experiments) (chapters 15, 16), - electronics and data acquisition (chapters 17 and 18). Comprehensive lists of literature, keywords and abbreviations can be found at the end of the book.